当前位置:
X-MOL 学术
›
Biotechnol. Adv.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Pathway to industrial application of heterotrophic organisms in critical metals recycling from e-waste
Biotechnology Advances ( IF 12.1 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.biotechadv.2024.108438 Mehdi Golzar-Ahmadi 1 , Nazanin Bahaloo-Horeh 2 , Fatemeh Pourhossein 3 , Forough Norouzi 1 , Nora Schoenberger 4 , Christian Hintersatz 4 , Mital Chakankar 4 , Maria Holuszko 1 , Anna H Kaksonen 5
Biotechnology Advances ( IF 12.1 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.biotechadv.2024.108438 Mehdi Golzar-Ahmadi 1 , Nazanin Bahaloo-Horeh 2 , Fatemeh Pourhossein 3 , Forough Norouzi 1 , Nora Schoenberger 4 , Christian Hintersatz 4 , Mital Chakankar 4 , Maria Holuszko 1 , Anna H Kaksonen 5
Affiliation
The transition to renewable energies and electric vehicles has triggered an unprecedented demand for metals. Sustainable development of these technologies relies on effectively managing the lifecycle of critical raw materials, including their responsible sourcing, efficient use, and recycling. Metal recycling from electronic waste (e-waste) is of paramount importance owing to ore-exceeding amounts of critical elements and high toxicity of heavy metals and organic pollutants in e-waste to the natural ecosystem and human body. Heterotrophic microbes secrete numerous metal-binding biomolecules such as organic acids, amino acids, cyanide, siderophores, peptides, and biosurfactants which can be utilized for eco-friendly and profitable metal recycling. In this review paper, we presented a critical review of heterotrophic organisms in biomining, and current barriers hampering the industrial application of organic acid bioleaching and biocyanide leaching. We also discussed how these challenges can be surmounted with simple methods (e.g., culture media optimization, separation of microbial growth and metal extraction process) and state-of-the-art biological approaches (e.g., artificial microbial community, synthetic biology, metabolic engineering, advanced fermentation strategies, and biofilm engineering). Lastly, we showcased emerging technologies (e.g., artificially synthesized peptides, siderophores, and biosurfactants) derived from heterotrophs with the potential for inexpensive, low-impact, selective and advanced metal recovery from bioleaching solutions.
中文翻译:
异养生物在电子垃圾关键金属回收中的工业应用途径
向可再生能源和电动汽车的过渡引发了对金属的空前需求。这些技术的可持续发展依赖于有效管理关键原材料的生命周期,包括其负责任的采购、高效使用和回收。由于电子垃圾中的关键元素含量超标,而且电子垃圾中的重金属和有机污染物对自然生态系统和人体具有很高的毒性,因此从电子垃圾(电子垃圾)中回收金属至关重要。异养微生物分泌许多金属结合生物分子,如有机酸、氨基酸、氰化物、铁载体、肽和生物表面活性剂,可用于环保和有利可图的金属回收。在这篇综述论文中,我们对生物采矿中的异养生物以及当前阻碍有机酸生物浸出和生物氰化物浸出工业应用的障碍进行了批判性回顾。我们还讨论了如何通过简单的方法(例如,培养基优化、微生物生长分离和金属提取过程)和最先进的生物学方法(例如,人工微生物群落、合成生物学、代谢工程、高级发酵策略和生物膜工程)来克服这些挑战。最后,我们展示了源自异养生物的新兴技术(例如,人工合成的肽、铁载体和生物表面活性剂),这些技术有可能从生物浸出溶液中实现廉价、低影响、选择性和先进的金属回收。
更新日期:2024-08-30
中文翻译:
异养生物在电子垃圾关键金属回收中的工业应用途径
向可再生能源和电动汽车的过渡引发了对金属的空前需求。这些技术的可持续发展依赖于有效管理关键原材料的生命周期,包括其负责任的采购、高效使用和回收。由于电子垃圾中的关键元素含量超标,而且电子垃圾中的重金属和有机污染物对自然生态系统和人体具有很高的毒性,因此从电子垃圾(电子垃圾)中回收金属至关重要。异养微生物分泌许多金属结合生物分子,如有机酸、氨基酸、氰化物、铁载体、肽和生物表面活性剂,可用于环保和有利可图的金属回收。在这篇综述论文中,我们对生物采矿中的异养生物以及当前阻碍有机酸生物浸出和生物氰化物浸出工业应用的障碍进行了批判性回顾。我们还讨论了如何通过简单的方法(例如,培养基优化、微生物生长分离和金属提取过程)和最先进的生物学方法(例如,人工微生物群落、合成生物学、代谢工程、高级发酵策略和生物膜工程)来克服这些挑战。最后,我们展示了源自异养生物的新兴技术(例如,人工合成的肽、铁载体和生物表面活性剂),这些技术有可能从生物浸出溶液中实现廉价、低影响、选择性和先进的金属回收。