当前位置: X-MOL 学术Eur. Heart J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Risk prediction of cardiovascular disease in the Asia-Pacific region: the SCORE2 Asia-Pacific model.
European Heart Journal ( IF 37.6 ) Pub Date : 2024-09-01 , DOI: 10.1093/eurheartj/ehae609
, Steven HJ Hageman 1 , Zijuan Huang 2 , Hokyou Lee 3 , Stephen Kaptoge 4 , Jannick AN Dorresteijn 1 , Lisa Pennells 4 , Emanuele Di Angelantonio 4 , Frank LJ Visseren 1 , Hyeon Chang Kim 3 , Sofian Johar 5 , , Noraidatulakma Abdullah , Muhammad Irfan Abdul Jalal , Elizabeth LM Barr , Parinya Chamnan , Chean Lin Chong , Lucky Cuenza , Pei Gao , Ian Graham , Saima Hilal , Joris Holtrop , Rahman Jamal , Tosha Ashish Kalhan , Hidehiro Kaneko , Chi-Ho LEE , Charlie GY Lim , Xiaofei Liu , Dianna J Magliano , Nima Motamed , Maziar Moradi-Lakeh , Sok King Ong , Ruwanthi Perera , Kameshwar Prasad , Jonathan E Shaw , Janaka de Silva , Xueling Sim , Yuta Suzuki , Kathryn CB Tan , Xun Tang , Kavita Venkataraman , Rajitha Wickremasinghe , Hideo Yasunaga , Farhad Zamani , , Emanuele Di Angelantonio , Michael Papadakis , Adam Timmis , Victor Aboyans , Panos Vardas , Frank LJ Visseren , John William McEvoy , Maryam Kavousi , Jean Ferrieres , Radu Huculeci , , Alex Junia , Rungroj Krittayaphong , Quang Ngoc Nguyen , Abdul Halim Raynaldo , Alan Fong , , Hyo-Soo Kim , Jack Tan , Issei Komuro , Wael Almahmeed , Khung Keong Yeo , Junya Ako , Kyung Woo Park
Affiliation  

BACKGROUND AND AIMS To improve upon the estimation of 10-year cardiovascular disease (CVD) event risk for individuals without prior CVD or diabetes mellitus in the Asia-Pacific region by systematic recalibration of the SCORE2 risk algorithm. METHODS The sex-specific and competing risk-adjusted SCORE2 algorithms were systematically recalibrated to reflect CVD incidence observed in four Asia-Pacific risk regions, defined according to country-level World Health Organization age- and sex-standardized CVD mortality rates. Using the same approach as applied for the original SCORE2 models, recalibration to each risk region was completed using expected CVD incidence and risk factor distributions from each region. RESULTS Risk region-specific CVD incidence was estimated using CVD mortality and incidence data on 8,405,574 individuals (556,421 CVD events). For external validation, data from 9,560,266 individuals without previous CVD or diabetes were analysed in 13 prospective studies from 12 countries (350,550 incident CVD events). The pooled C-index of the SCORE2 Asia-Pacific algorithms in the external validation data sets was 0.710 (95% confidence interval [CI] 0.677-0.745). Cohort-specific C-indices ranged from 0.605 (95% CI 0.597-0.613) to 0.840 (95% CI 0.771-0.909). Estimated CVD risk varied several-fold across Asia-Pacific risk regions. For example, the estimated 10-year CVD risk for a 50-year-old non-smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and high-density lipoprotein-cholesterol of 1.3 mmol/L, ranged from 7% for men in low-risk countries to 14% for men in very-high-risk countries, and from 3% for women in low-risk countries to 13% for women in very-high-risk countries. CONCLUSIONS The SCORE2 Asia-Pacific algorithms have been calibrated to estimate 10-year risk of CVD for apparently healthy people in Asia and Oceania, thereby enhancing the identification of individuals at higher risk of developing CVD across the Asia-Pacific region.

中文翻译:


亚太地区心血管疾病风险预测:SCORE2亚太模型。



背景和目标 通过系统地重新校准 SCORE2 风险算法,改进对亚太地区既往无 CVD 或糖尿病的个体 10 年心血管疾病 (CVD) 事件风险的估计。方法 对特定性别和竞争风险调整 SCORE2 算法进行系统重新校准,以反映在四个亚太风险地区观察到的 CVD 发病率,这些发病率是根据世界卫生组织国家级年龄和性别标准化 CVD 死亡率定义的。使用与原始 SCORE2 模型相同的方法,使用每个区域的预期 CVD 发病率和风险因素分布完成对每个风险区域的重新校准。结果 使用 8,405,574 人(556,421 CVD 事件)的 CVD 死亡率和发病率数据估算了特定风险区域的 CVD 发病率。为了进行外部验证,我们对来自 12 个国家的 13 项前瞻性研究(350,550 起 CVD 事件)中来自 9,560,266 名既往无 CVD 或糖尿病的个体的数据进行了分析。外部验证数据集中 SCORE2 亚太算法的汇总 C 指数为 0.710(95% 置信区间 [CI] 0.677-0.745)。队列特异性 C 指数范围为 0.605 (95% CI 0.597-0.613) 至 0.840 (95% CI 0.771-0.909)。亚太地区风险地区的 CVD 风险估计值存在数倍差异。例如,对于一名 50 岁非吸烟者,收缩压为 140 mmHg,总胆固醇为 5.5 mmol/L,高密度脂蛋白胆固醇为 1.3 mmol/L,估计 10 年 CVD 风险,范围从低风险国家男性的 7% 到极高风险国家男性的 14%,以及低风险国家女性的 3% 到极高风险国家女性的 13%。 结论 SCORE2 亚太地区算法已经过校准,可估计亚洲和大洋洲表面健康人群 10 年 CVD 风险,从而增强对整个亚太地区 CVD 风险较高个体的识别。
更新日期:2024-09-01
down
wechat
bug