当前位置:
X-MOL 学术
›
Bioresource Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Engineering high production of fatty alcohols from methanol by constructing coordinated dual biosynthetic pathways
Bioresource Technology ( IF 9.7 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.biortech.2024.131396 Yiwei Shen 1 , Peng Cai 2 , Linhui Gao 1 , Xiaoyan Wu 1 , Lun Yao 2 , Yongjin J Zhou 3
Bioresource Technology ( IF 9.7 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.biortech.2024.131396 Yiwei Shen 1 , Peng Cai 2 , Linhui Gao 1 , Xiaoyan Wu 1 , Lun Yao 2 , Yongjin J Zhou 3
Affiliation
Microbial cell factories provide an efficient approach for the green manufacturing of chemicals. However, the excessive use of sugars increases the potential risk of food crisis. Methanol, an abundant feedstock, holds promise in facilitating low-carbon production processes. However, the current methanol bioconversion is hindered by limited regulatory strategies and relatively low conversion efficiency. Here, a yeast biocatalyst was extensively engineered for efficient biosynthesis of fatty alcohols through reinforcement of precursor supply and methanol assimilation in Pichia pastoris . Furthermore, the dual cytoplasmic and peroxisomal biosynthetic pathways were constructed by mating and exhibited robust production of 5.6 g/L fatty alcohols by using methanol as the sole carbon source. This study provides a heterozygous diploid P. pastoris strain with dual cytoplasmic and peroxisomal biosynthetic pathways, which achieved the highest fatty alcohol production from one-carbon feedstocks to date.
中文翻译:
通过构建协调的双生物合成途径从甲醇中高产脂肪醇
微生物细胞工厂为化学品的绿色制造提供了一种有效的方法。然而,糖的过量使用增加了粮食危机的潜在风险。甲醇是一种丰富的原料,有望促进低碳生产过程。然而,目前的甲醇生物转化受到有限的监管策略和相对较低的转化效率的阻碍。在这里,酵母生物催化剂被广泛设计用于通过加强前体供应和毕赤酵母中的甲醇同化来有效地生物合成脂肪醇。此外,通过交配构建了细胞质和过氧化物酶体双生物合成途径,并以甲醇作为唯一碳源,表现出强劲的 5.6 g/L 脂肪醇生产能力。这项研究提供了一种具有双细胞质和过氧化物酶体生物合成途径的杂合二倍体巴斯德毕赤酵母菌株,该菌株实现了迄今为止单碳原料最高的脂肪醇产量。
更新日期:2024-08-30
中文翻译:
通过构建协调的双生物合成途径从甲醇中高产脂肪醇
微生物细胞工厂为化学品的绿色制造提供了一种有效的方法。然而,糖的过量使用增加了粮食危机的潜在风险。甲醇是一种丰富的原料,有望促进低碳生产过程。然而,目前的甲醇生物转化受到有限的监管策略和相对较低的转化效率的阻碍。在这里,酵母生物催化剂被广泛设计用于通过加强前体供应和毕赤酵母中的甲醇同化来有效地生物合成脂肪醇。此外,通过交配构建了细胞质和过氧化物酶体双生物合成途径,并以甲醇作为唯一碳源,表现出强劲的 5.6 g/L 脂肪醇生产能力。这项研究提供了一种具有双细胞质和过氧化物酶体生物合成途径的杂合二倍体巴斯德毕赤酵母菌株,该菌株实现了迄今为止单碳原料最高的脂肪醇产量。