当前位置:
X-MOL 学术
›
Biophys. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Zinc inhibits the voltage-gated proton channel HCNL1
Biophysical Journal ( IF 3.2 ) Pub Date : 2024-08-28 , DOI: 10.1016/j.bpj.2024.08.018 Makoto F Kuwabara 1 , Joschua Klemptner 1 , Julia Muth 1 , Emilia De Martino 1 , Dominik Oliver 1 , Thomas K Berger 1
Biophysical Journal ( IF 3.2 ) Pub Date : 2024-08-28 , DOI: 10.1016/j.bpj.2024.08.018 Makoto F Kuwabara 1 , Joschua Klemptner 1 , Julia Muth 1 , Emilia De Martino 1 , Dominik Oliver 1 , Thomas K Berger 1
Affiliation
Voltage-gated ion channels allow ion flux across biological membranes in response to changes in the membrane potential. HCNL1 is a recently discovered voltage-gated ion channel that selectively conducts protons through its voltage-sensing domain (VSD), reminiscent of the well-studied depolarization-activated Hv1 proton channel. However, HCNL1 is activated by hyperpolarization, allowing the influx of protons, which leads to an intracellular acidification in zebrafish sperm. Zinc ions (Zn2+ ) are important cofactors in many proteins and essential for sperm physiology. Proton channels such as Hv1 and Otopetrin1 are inhibited by Zn2+ . We investigated the effect of Zn2+ on heterologously expressed HCNL1 channels using electrophysiological and fluorometric techniques. Extracellular Zn2+ inhibits HCNL1 currents with an apparent half-maximal inhibition (IC50 ) of 26 μ M. Zn2+ slows voltage-dependent current kinetics, shifts the voltage-dependent activation to more negative potentials, and alters hyperpolarization-induced conformational changes of the voltage sensor. Our data suggest that extracellular Zn2+ inhibits HCNL1 currents by multiple mechanisms, including modulation of channel gating. Two histidine residues located at the extracellular side of the VSD might weakly contribute to Zn2+ coordination: mutants with either histidine replaced with alanine show modest shifts of the IC50 values to higher concentrations. Interestingly, Zn2+ inhibits HCNL1 at even lower concentrations from the intracellular side (IC50 ≈ 0.5 μ M). A histidine residue at the intracellular end of S1 (position 50) is important for Zn2+ binding: much higher Zn2+ concentrations are required to inhibit the mutant HCNL1-H50A (IC50 ≈ 106 μ M). We anticipate that Zn2+ will be a useful ion to study the structure-function relationship of HCNL1 as well as the physiological role of HCNL1 in zebrafish sperm.
中文翻译:
锌抑制电压门控质子通道 HCNL1
电压门控离子通道允许离子通量穿过生物膜,以响应膜电位的变化。HCNL1 是最近发现的电压门控离子通道,可选择性地通过其电压感应域 (VSD) 传导质子,让人想起经过充分研究的去极化激活的 Hv1 质子通道。然而,HCNL1 被超极化激活,允许质子流入,从而导致斑马鱼精子的细胞内酸化。锌离子 (Zn2+) 是许多蛋白质中的重要辅助因子,对精子生理学至关重要。Hv1 和 Otopetrin1 等质子通道被 Zn2+ 抑制。我们使用电生理学和荧光技术研究了 Zn 2 + 对异源表达的 HCNL1 通道的影响。细胞外 Zn2 + 抑制 HCNL1 电流,明显的半最大抑制 (IC50) 为 26 μM。Zn2+ 减慢电压依赖性电流动力学,将电压依赖性激活转移到更多的负电位,并改变超极化诱导的电压传感器构象变化。我们的数据表明,细胞外 Zn2 + 通过多种机制抑制 HCNL1 电流,包括通道门控的调节。位于 VSD 细胞外侧的两个组氨酸残基可能对 Zn 2 + 配位有微弱的贡献:用丙氨酸取代组氨酸的突变体显示 IC50 值向更高浓度的适度变化。有趣的是,Zn2 + 在细胞内侧以更低的浓度抑制 HCNL1 (IC50 ≈ 0.5 μM)。S1 细胞内末端(位置 50)的组氨酸残基对 Zn2 + 结合很重要:需要更高的 Zn 2 + 浓度来抑制突变体 HCNL1-H50A (IC50 ≈ 106 μM)。 我们预计 Zn2+ 将成为研究 HCNL1 的结构-功能关系以及 HCNL1 在斑马鱼精子中的生理作用的有用离子。
更新日期:2024-08-28
中文翻译:
锌抑制电压门控质子通道 HCNL1
电压门控离子通道允许离子通量穿过生物膜,以响应膜电位的变化。HCNL1 是最近发现的电压门控离子通道,可选择性地通过其电压感应域 (VSD) 传导质子,让人想起经过充分研究的去极化激活的 Hv1 质子通道。然而,HCNL1 被超极化激活,允许质子流入,从而导致斑马鱼精子的细胞内酸化。锌离子 (Zn2+) 是许多蛋白质中的重要辅助因子,对精子生理学至关重要。Hv1 和 Otopetrin1 等质子通道被 Zn2+ 抑制。我们使用电生理学和荧光技术研究了 Zn 2 + 对异源表达的 HCNL1 通道的影响。细胞外 Zn2 + 抑制 HCNL1 电流,明显的半最大抑制 (IC50) 为 26 μM。Zn2+ 减慢电压依赖性电流动力学,将电压依赖性激活转移到更多的负电位,并改变超极化诱导的电压传感器构象变化。我们的数据表明,细胞外 Zn2 + 通过多种机制抑制 HCNL1 电流,包括通道门控的调节。位于 VSD 细胞外侧的两个组氨酸残基可能对 Zn 2 + 配位有微弱的贡献:用丙氨酸取代组氨酸的突变体显示 IC50 值向更高浓度的适度变化。有趣的是,Zn2 + 在细胞内侧以更低的浓度抑制 HCNL1 (IC50 ≈ 0.5 μM)。S1 细胞内末端(位置 50)的组氨酸残基对 Zn2 + 结合很重要:需要更高的 Zn 2 + 浓度来抑制突变体 HCNL1-H50A (IC50 ≈ 106 μM)。 我们预计 Zn2+ 将成为研究 HCNL1 的结构-功能关系以及 HCNL1 在斑马鱼精子中的生理作用的有用离子。