当前位置:
X-MOL 学术
›
Acta Cryst. D
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surface-mutagenesis strategies to enable structural biology crystallization platforms.
Acta Crystallographica Section D ( IF 2.6 ) Pub Date : 2024-08-29 , DOI: 10.1107/s2059798324007939 Martina Schaefer 1 , Vera Pütter 2 , André Hilpmann 2 , Ursula Egner 1 , Simon James Holton 1 , Roman Christian Hillig 1
Acta Crystallographica Section D ( IF 2.6 ) Pub Date : 2024-08-29 , DOI: 10.1107/s2059798324007939 Martina Schaefer 1 , Vera Pütter 2 , André Hilpmann 2 , Ursula Egner 1 , Simon James Holton 1 , Roman Christian Hillig 1
Affiliation
A key prerequisite for the successful application of protein crystallography in drug discovery is to establish a robust crystallization system for a new drug-target protein fast enough to deliver crystal structures when the first inhibitors have been identified in the hit-finding campaign or, at the latest, in the subsequent hit-to-lead process. The first crucial step towards generating well folded proteins with a high likelihood of crystallizing is the identification of suitable truncation variants of the target protein. In some cases an optimal length variant alone is not sufficient to support crystallization and additional surface mutations need to be introduced to obtain suitable crystals. In this contribution, four case studies are presented in which rationally designed surface modifications were key to establishing crystallization conditions for the target proteins (the protein kinases Aurora-C, IRAK4 and BUB1, and the KRAS-SOS1 complex). The design process which led to well diffracting crystals is described and the crystal packing is analysed to understand retrospectively how the specific surface mutations promoted successful crystallization. The presented design approaches are routinely used in our team to support the establishment of robust crystallization systems which enable structure-guided inhibitor optimization for hit-to-lead and lead-optimization projects in pharmaceutical research.
中文翻译:
支持结构生物学结晶平台的表面诱变策略。
蛋白质晶体学在药物发现中成功应用的一个关键先决条件是为新药物靶点蛋白质建立一个强大的结晶系统,该系统足够快地提供晶体结构,当在命中发现活动中鉴定出第一个抑制剂时,或者在最新的,在随后的点击引导过程中。生成具有高结晶可能性的良好折叠蛋白质的第一个关键步骤是鉴定目标蛋白质的合适截短变体。在某些情况下,单独的最佳长度变体不足以支持结晶,需要引入额外的表面突变以获得合适的晶体。在这篇文章中,提出了四个案例研究,其中合理设计的表面修饰是建立目标蛋白(蛋白激酶 Aurora-C、IRAK4 和 BUB1 以及 KRAS-SOS1 复合物)结晶条件的关键。描述了产生良好衍射晶体的设计过程,并对晶体堆积进行了分析,以回顾性地了解特定表面突变如何促进成功结晶。我们的团队经常使用所提出的设计方法来支持强大的结晶系统的建立,该系统能够为药物研究中的先导化合物和先导化合物优化项目提供结构引导的抑制剂优化。
更新日期:2024-09-01
中文翻译:
支持结构生物学结晶平台的表面诱变策略。
蛋白质晶体学在药物发现中成功应用的一个关键先决条件是为新药物靶点蛋白质建立一个强大的结晶系统,该系统足够快地提供晶体结构,当在命中发现活动中鉴定出第一个抑制剂时,或者在最新的,在随后的点击引导过程中。生成具有高结晶可能性的良好折叠蛋白质的第一个关键步骤是鉴定目标蛋白质的合适截短变体。在某些情况下,单独的最佳长度变体不足以支持结晶,需要引入额外的表面突变以获得合适的晶体。在这篇文章中,提出了四个案例研究,其中合理设计的表面修饰是建立目标蛋白(蛋白激酶 Aurora-C、IRAK4 和 BUB1 以及 KRAS-SOS1 复合物)结晶条件的关键。描述了产生良好衍射晶体的设计过程,并对晶体堆积进行了分析,以回顾性地了解特定表面突变如何促进成功结晶。我们的团队经常使用所提出的设计方法来支持强大的结晶系统的建立,该系统能够为药物研究中的先导化合物和先导化合物优化项目提供结构引导的抑制剂优化。