当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Situ Self-Polymerization of Thioctic Acid Enabled Interphase Engineering Towards High-Performance Lithium–Sulfur Battery
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-03 , DOI: 10.1002/aenm.202402617
Liujian Wang 1 , Ke Yue 2 , Qiangqiang Qiao 2 , Zihao Zhao 1 , Yanyan Xu 1 , Leyi Pan 1 , Yujing Liu 2 , Hanying Li 1 , Baoku Zhu 1
Affiliation  

Lithium–sulfur (Li–S) batteries possess high theoretical energy density, whereas the shuttle effect of polysulfides and the uncontrollable lithium (Li) dendrites seriously reduce the reversible capacity and cycling lifespan. Constructing an interphase to address the issues in both the cathode and anode simultaneously is significant but still challenging. In this study, a strategy of functionalizing commercial polypropylene (PP) separators is proposed by in situ poly(thioctic acid) (PTA) polymerization. Compared with the conventional separator modifications, the ring-opening polymerization methodology initiated by heat is more facile and environment-friendly without changing the nanostructures among the porous separators. On the cathode side, the PTA-coated separator (PTA-PP) blocks the shuttle of polysulfides through the electrostatic interaction. On the anode side, the PTA-coated generates a lithium fluoride (LiF)-rich solid electrolyte interface (SEI), identified by cryo-transmission electron microscopy (cryo-TEM), to accelerate the Li+ diffusion and inhibit the growth of Li dendrites. Due to the interphases constructed by the PTA-PP separator, the Li–S cells exhibit excellent long-term cycling in which the capacity retention rate is more than 76% after 700 cycles at 0.5 C. The in situ elaborate modification strategy may provide insights into the high-performance separator design to promote the potentially large-scale applications of Li–S batteries.

中文翻译:


硫辛酸的原位自聚合使高性能锂硫电池的相间工程成为可能



锂硫 (Li–S) 电池具有较高的理论能量密度,而多硫化物的穿梭效应和不可控的锂 (Li) 枝晶严重降低了可逆容量和循环寿命。构建一个界面以同时解决阴极和阳极中的问题很重要,但仍然具有挑战性。在本研究中,提出了一种通过原位聚硫辛酸 (PTA) 聚合对商用聚丙烯 (PP) 隔膜进行功能化的策略。与传统的隔膜改性相比,由热引发的开环聚合方法更加简便和环保,而不会改变多孔隔膜之间的纳米结构。在阴极侧,PTA 涂层隔膜 (PTA-PP) 通过静电相互作用阻止多硫化物穿梭。在阳极侧,PTA 涂层产生富含氟化锂 (LiF) 的固体电解质界面 (SEI),通过冷冻透射电子显微镜 (cryo-TEM) 识别,以加速 Li+ 扩散并抑制锂枝晶的生长。由于 PTA-PP 隔膜构建的界面,Li-S 电池表现出优异的长期循环性能,在 0.5 C 下循环 700 次后,容量保留率超过 76%。原位精心设计的改性策略可能为高性能隔膜设计提供见解,以促进 Li-S 电池的潜在大规模应用。
更新日期:2024-09-03
down
wechat
bug