Designs, Codes and Cryptography ( IF 1.4 ) Pub Date : 2024-09-03 , DOI: 10.1007/s10623-024-01483-x Yiwen Gao , Yuan Li , Haibin Kan
Complex orthogonal designs (CODs) have been used to construct space-time block codes. Its real analog, real orthogonal designs, or equivalently, sum of squares composition formula, have a long history in mathematics. Driven by some practical considerations, Adams et al. (IEEE Trans Info Theory, 57(4):2254–2262, 2011) introduced the definition of balanced complex orthogonal designs (BCODs). The code rate of BCODs is 1/2, and their minimum decoding delay is proven to be \(2^m\), where 2m is the number of columns. We prove, when the number of columns is fixed, all (indecomposable) balanced complex orthogonal designs (BCODs) have the same parameters \([2^m, 2m, 2^{m-1}]\), and moreover, they are all equivalent.
中文翻译:
论平衡复正交设计的独特性
复杂正交设计(COD)已被用来构造时空分组码。它的实模拟、实正交设计,或者等效的平方和合成公式,在数学中有着悠久的历史。出于一些实际考虑,Adams 等人。 (IEEE Trans Info Theory, 57(4):2254–2262, 2011)引入了平衡复数正交设计(BCOD)的定义。 BCOD 的码率为 1/2,其最小解码延迟被证明为\(2^m\) ,其中 2 m是列数。我们证明,当列数固定时,所有(不可分解的)平衡复正交设计(BCOD)都具有相同的参数\([2^m, 2m, 2^{m-1}]\) ,而且,它们都是等价的。