当前位置:
X-MOL 学术
›
Bioresource Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Simultaneous removal of ammonia nitrogen, sulfamethoxazole, and antibiotic resistance genes in self-corrosion microelectrolysis-enhanced counter-diffusion biofilm system
Bioresource Technology ( IF 9.7 ) Pub Date : 2024-08-31 , DOI: 10.1016/j.biortech.2024.131399 Ying Xue 1 , Yufei Cheng 1 , Qingru Wang 1 , Rui Zhao 1 , Xiaohang Han 1 , Junqin Zhu 1 , Langming Bai 1 , Guibai Li 1 , Han Zhang 1 , Heng Liang 1
Bioresource Technology ( IF 9.7 ) Pub Date : 2024-08-31 , DOI: 10.1016/j.biortech.2024.131399 Ying Xue 1 , Yufei Cheng 1 , Qingru Wang 1 , Rui Zhao 1 , Xiaohang Han 1 , Junqin Zhu 1 , Langming Bai 1 , Guibai Li 1 , Han Zhang 1 , Heng Liang 1
Affiliation
A self-corrosion microelectrolysis (SME)-enhanced membrane-aerated biofilm reactor (eMABR) was developed for the removal of pollutants and reduction of antibiotic resistance genes (ARGs). Fe2+ and Fe3+ formed iron oxides on the biofilm, which enhanced the adsorption and redox process. SME can induce microorganisms to secrete more extracellular proteins and up-regulate the expression of ammonia monooxygenase (AMO) (0.92 log2 ). AMO exposed extra binding sites (ASP-69) for antibiotics, weakening the competition between NH4 + -N and sulfamethoxazole (SMX). The NH4 + -N removal efficiency in the S-eMABR (adding SMX and IC) increased by 44.87 % compared to the S-MABR (adding SMX). SME increased the removal performance of SMX by approximately 1.45 times, down-regulated the expressions of sul 1 (−1.69 log2 ) and sul 2 (−1.30 log2 ) genes, and controlled their transfer within the genus. This study provides a novel strategy for synergistic reduction of antibiotics and ARGs, and elucidates the corresponding mechanism based on metatranscriptomic and molecular docking analyses.
中文翻译:
自腐蚀微电解增强反扩散生物膜系统同时去除氨氮、磺胺甲恶唑和抗生素抗性基因
开发了一种自腐蚀微电解(SME)增强型膜曝气生物膜反应器(eMABR),用于去除污染物和减少抗生素抗性基因(ARG)。 Fe2+和Fe3+在生物膜上形成氧化铁,增强了吸附和氧化还原过程。 SME可以诱导微生物分泌更多的胞外蛋白并上调氨单加氧酶(AMO)的表达(0.92 log2)。 AMO 暴露了额外的抗生素结合位点 (ASP-69),削弱了 NH4+-N 和磺胺甲恶唑 (SMX) 之间的竞争。与S-MABR(添加SMX)相比,S-eMABR(添加SMX和IC)的NH4+-N去除效率提高了44.87%。 SME将SMX的去除性能提高了约1.45倍,下调了sul1(-1.69 log2)和sul2(-1.30 log2)基因的表达,并控制了它们在属内的转移。本研究提供了一种协同减少抗生素和ARG的新策略,并基于宏转录组和分子对接分析阐明了相应的机制。
更新日期:2024-08-31
中文翻译:
自腐蚀微电解增强反扩散生物膜系统同时去除氨氮、磺胺甲恶唑和抗生素抗性基因
开发了一种自腐蚀微电解(SME)增强型膜曝气生物膜反应器(eMABR),用于去除污染物和减少抗生素抗性基因(ARG)。 Fe2+和Fe3+在生物膜上形成氧化铁,增强了吸附和氧化还原过程。 SME可以诱导微生物分泌更多的胞外蛋白并上调氨单加氧酶(AMO)的表达(0.92 log2)。 AMO 暴露了额外的抗生素结合位点 (ASP-69),削弱了 NH4+-N 和磺胺甲恶唑 (SMX) 之间的竞争。与S-MABR(添加SMX)相比,S-eMABR(添加SMX和IC)的NH4+-N去除效率提高了44.87%。 SME将SMX的去除性能提高了约1.45倍,下调了sul1(-1.69 log2)和sul2(-1.30 log2)基因的表达,并控制了它们在属内的转移。本研究提供了一种协同减少抗生素和ARG的新策略,并基于宏转录组和分子对接分析阐明了相应的机制。