当前位置: X-MOL 学术IEEE Wirel. Commun. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
cGAN-Based Slow Fluid Antenna Multiple Access
IEEE Wireless Communications Letters ( IF 4.6 ) Pub Date : 2024-09-02 , DOI: 10.1109/lwc.2024.3452941
Mahdi Eskandari 1 , Alister Graham Burr 1 , Kanapathippillai Cumanan 1 , Kai-Kit Wong 2
Affiliation  

The emerging fluid antenna system (FAS) technology enables multiple access utilizing deep fades in the spatial domain. This paradigm is known as fluid antenna multiple access (FAMA). Despite conceptual simplicity, the challenge of finding the position (a.k.a. port) that maximizes the signal-to-interference plus noise ratio (SINR) at the FAS receiver output, cannot be overstated. This letter proposes to take only a few SINR observations in the FAS space and infer the SINRs for the missing ports by employing a conditional generative adversarial network (cGAN). With this approach, port selection for FAMA can be performed based on a few SINR observations. Our simulation results illustrate great reductions in the outage probability (OP) with only few observed ports, showcasing the efficacy of our proposed scheme.

中文翻译:


基于 cGAN 的慢速流体天线多址



新兴的流体天线系统 (FAS) 技术利用空间域中的深度衰落实现多重访问。这种范式被称为流体天线多址 (FAMA)。尽管概念简单,但在 FAS 接收器输出端找到使信干比加噪声比 (SINR) 最大化的位置(又名端口)的挑战怎么强调都不为过。这封信建议在 FAS 空间中仅进行少量 SINR 观察,并通过采用条件生成对抗网络 (cGAN) 来推断缺失端口的 SINR。使用这种方法,可以根据一些 SINR 观测值执行 FAMA 的端口选择。我们的仿真结果表明,仅观察到的端口很少,中断概率 (OP) 大大降低,展示了我们提出的方案的有效性。
更新日期:2024-09-02
down
wechat
bug