当前位置:
X-MOL 学术
›
Rev. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lithium–sulfur batteries beyond lithium-ion counterparts: reasonable substituting challenges, current research focus, binding critical role, and cathode designing
Reviews in Chemical Engineering ( IF 4.9 ) Pub Date : 2024-09-02 , DOI: 10.1515/revce-2023-0059 Farshad Boorboor Ajdari 1 , Mahdi Niknam Shahrak 2 , Mahshid Ershadi 3, 4 , Mehdi Shakourian-Fard 5 , Fereshteh Abbasi 1 , Ganesh Kamath 6 , Faeze Akbari Beni 2 , Fatemeh Ghasemi 1 , Hamid Reza Ghenaatian 7 , Seeram Ramakrishna 8
Reviews in Chemical Engineering ( IF 4.9 ) Pub Date : 2024-09-02 , DOI: 10.1515/revce-2023-0059 Farshad Boorboor Ajdari 1 , Mahdi Niknam Shahrak 2 , Mahshid Ershadi 3, 4 , Mehdi Shakourian-Fard 5 , Fereshteh Abbasi 1 , Ganesh Kamath 6 , Faeze Akbari Beni 2 , Fatemeh Ghasemi 1 , Hamid Reza Ghenaatian 7 , Seeram Ramakrishna 8
Affiliation
Despite concerns regarding safety, economics, and the environment, lithium-ion batteries (LIBs) are considerably utilized on account of their low energy density and capacity. Li–sulfur (Li–S) batteries have become a promising substitute for LIBs. Here, we first compared both systems in their cons and pros and analyzed the leading countries and companies in Li–S research are assessed through the utilization of an academic database. The scope of our research includes performance-enhancing design elements, cathode components, and binder materials. Synthetic and natural binders are trialed in an effort to enhance Li–S performance. Understanding the fundamental mechanisms enables the development of durable cathodes and binders. To overcome obstacles such as polysulfide adsorption, shuttle effect, and ion transport limitations, conducting polymers, metal/metal oxides, carbon-based compounds, MOFs, and Mxenes are investigated as potential cathode materials. In addition to pore characteristics and active polar sites, the efficacy of a battery is influenced by the anode surface geometry and heteroatom doping. Our review indicates that binders and sulfur/host composites must be meticulously chosen for Li–S battery cathode materials. This research advances energy storage technology by establishing the foundation for economically viable lithium–sulfur batteries with superior performance.
中文翻译:
锂硫电池超越锂离子电池:合理替代挑战、当前研究热点、结合关键作用和正极设计
尽管存在安全、经济和环境方面的担忧,但锂离子电池(LIB)因其低能量密度和容量而被大量使用。锂硫(Li-S)电池已成为锂离子电池的有前景的替代品。在这里,我们首先比较了这两个系统的优缺点,并利用学术数据库对锂硫研究的领先国家和公司进行了评估。我们的研究范围包括性能增强设计元素、阴极组件和粘合剂材料。尝试使用合成和天然粘合剂来提高 Li-S 性能。了解基本机制有助于开发耐用的阴极和粘合剂。为了克服多硫化物吸附、穿梭效应和离子传输限制等障碍,人们研究了导电聚合物、金属/金属氧化物、碳基化合物、MOF 和 Mxene 作为潜在的阴极材料。除了孔隙特性和活性极性位点之外,电池的功效还受到阳极表面几何形状和杂原子掺杂的影响。我们的审查表明,对于锂硫电池正极材料,必须精心选择粘合剂和硫/主体复合材料。这项研究通过为具有优越性能的经济上可行的锂硫电池奠定了基础,推动了储能技术的发展。
更新日期:2024-09-02
中文翻译:
锂硫电池超越锂离子电池:合理替代挑战、当前研究热点、结合关键作用和正极设计
尽管存在安全、经济和环境方面的担忧,但锂离子电池(LIB)因其低能量密度和容量而被大量使用。锂硫(Li-S)电池已成为锂离子电池的有前景的替代品。在这里,我们首先比较了这两个系统的优缺点,并利用学术数据库对锂硫研究的领先国家和公司进行了评估。我们的研究范围包括性能增强设计元素、阴极组件和粘合剂材料。尝试使用合成和天然粘合剂来提高 Li-S 性能。了解基本机制有助于开发耐用的阴极和粘合剂。为了克服多硫化物吸附、穿梭效应和离子传输限制等障碍,人们研究了导电聚合物、金属/金属氧化物、碳基化合物、MOF 和 Mxene 作为潜在的阴极材料。除了孔隙特性和活性极性位点之外,电池的功效还受到阳极表面几何形状和杂原子掺杂的影响。我们的审查表明,对于锂硫电池正极材料,必须精心选择粘合剂和硫/主体复合材料。这项研究通过为具有优越性能的经济上可行的锂硫电池奠定了基础,推动了储能技术的发展。