当前位置:
X-MOL 学术
›
Int. J. Mech. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Meta-arch structure: Designed reinforcement cage to enhance vibration isolation performance
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.ijmecsci.2024.109692 Guoqing Sun , Xiyue An , Ruiyi Jiang , Xinfeng Yuan , Xuanxuan Hou , Hualin Fan
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.ijmecsci.2024.109692 Guoqing Sun , Xiyue An , Ruiyi Jiang , Xinfeng Yuan , Xuanxuan Hou , Hualin Fan
In this study, inspired by the mechanical metamaterials with bandgap properties, a new type of meta-arch structure (MAS) for the attenuation of elastic waves is proposed. In this metastructure, the reinforcement cage, typically employed to enhance the tensile properties of building materials, has been redesigned and transformed into a new structure containing circular tubes with embedded resonant microstructures. The vibration reduction performance of the MAS was illustrated by the frequency response analysis in the simulation calculation, and the generation mechanism of the vibration attenuation band was revealed. The specimens of the complex MAS consisting of gypsum, reinforced steel bars, and tubes were fabricated, and the vibration response experiments were carried out to determine the dynamic properties of the novel MAS. The results show that the designed arch structure exhibits a broad vibration attenuation band without sacrificing its structural bearing capacity. Additionally, the robustness of the band gap is demonstrated by analyzing how changes in the positions of excitation and response points influence the band gap. Moreover, the MAS can be customized for specific application scenarios of vibration reduction according to the parameter analysis. Finally, the experimental results closely align with the numerical estimations, confirming the feasibility of the design method for reducing vibrations. This work provides a new method for the development of building structures for vibration and noise control.
中文翻译:
元拱结构:设计钢筋笼,增强隔振性能
在这项研究中,受具有带隙特性的机械超材料的启发,提出了一种用于弹性波衰减的新型元拱结构(MAS)。在这种元结构中,通常用于增强建筑材料拉伸性能的钢筋笼已被重新设计并转变为包含带有嵌入式共振微结构的圆管的新结构。通过仿真计算中的频率响应分析说明了MAS的减振性能,并揭示了振动衰减带的产生机制。制作了由石膏、钢筋和管组成的复杂 MAS 样品,并进行了振动响应实验,以确定新型 MAS 的动态性能。结果表明,设计的拱结构在不牺牲结构承载力的情况下表现出较宽的减振带。此外,通过分析激励点和响应点位置的变化如何影响带隙,证明了带隙的鲁棒性。此外,MAS还可以根据参数分析,针对特定的减振应用场景进行定制。最后,实验结果与数值估计紧密一致,证实了减振设计方法的可行性。这项工作为开发振动和噪声控制建筑结构提供了一种新方法。
更新日期:2024-08-30
中文翻译:
元拱结构:设计钢筋笼,增强隔振性能
在这项研究中,受具有带隙特性的机械超材料的启发,提出了一种用于弹性波衰减的新型元拱结构(MAS)。在这种元结构中,通常用于增强建筑材料拉伸性能的钢筋笼已被重新设计并转变为包含带有嵌入式共振微结构的圆管的新结构。通过仿真计算中的频率响应分析说明了MAS的减振性能,并揭示了振动衰减带的产生机制。制作了由石膏、钢筋和管组成的复杂 MAS 样品,并进行了振动响应实验,以确定新型 MAS 的动态性能。结果表明,设计的拱结构在不牺牲结构承载力的情况下表现出较宽的减振带。此外,通过分析激励点和响应点位置的变化如何影响带隙,证明了带隙的鲁棒性。此外,MAS还可以根据参数分析,针对特定的减振应用场景进行定制。最后,实验结果与数值估计紧密一致,证实了减振设计方法的可行性。这项工作为开发振动和噪声控制建筑结构提供了一种新方法。