当前位置: X-MOL 学术Commun. Nonlinear Sci. Numer. Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic event-triggered neuro-optimal control for uncertain nonlinear systems with unknown dead-zone constraint
Communications in Nonlinear Science and Numerical Simulation ( IF 3.4 ) Pub Date : 2024-08-23 , DOI: 10.1016/j.cnsns.2024.108308
Shunchao Zhang , Jiawei Zhuang , Yongwei Zhang

In this article, we propose a dynamic event-triggered neuro-optimal control scheme (DETNOC) for uncertain nonlinear systems subject to unknown dead-zone and disturbances through the design of a composite control law. An integral sliding mode-based discontinuous control law is utilized to compensate for the effects of unknown dead-zone, disturbance, and a component of uncertainties. As a result, a system dynamics that evolves free of these effects during the sliding mode is obtained. Then, an adaptive dynamic programming-based dynamic event-triggered optimal control law is designed to stabilize the sliding mode dynamics with the help of critic-only neural network architecture. Finally, stability analysis of the closed-loop system is provided and the effectiveness of the developed DETNOC scheme is verified.

中文翻译:


具有未知死区约束的不确定非线性系统的动态事件触发神经最优控制



在本文中,我们通过设计复合控制律,针对受未知死区和干扰影响的不确定非线性系统,提出了一种动态事件触发神经最优控制方案(DETNOC)。采用基于积分滑模的不连续控制律来补偿未知死区、干扰和不确定性分量的影响。结果,获得了在滑模期间不受这些影响的系统动力学。然后,设计了一种基于自适应动态规划的动态事件触发最优控制律,以借助仅批评神经网络架构来稳定滑模动力学。最后,对闭环系统进行稳定性分析,验证了所开发的DETNOC方案的有效性。
更新日期:2024-08-23
down
wechat
bug