当前位置: X-MOL 学术Commun. Nonlinear Sci. Numer. Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predefined-time synchronization of time-varying delay fractional-order Cohen–Grossberg neural network based on memristor
Communications in Nonlinear Science and Numerical Simulation ( IF 3.4 ) Pub Date : 2024-08-28 , DOI: 10.1016/j.cnsns.2024.108294
Xinyao Cui , Mingwen Zheng , Yanping Zhang , Manman Yuan , Hui Zhao , Yaoming Zhang

This paper delves into the synchronization dynamics of fractional-order memristor Cohen–Grossberg neural network systems with time-varying delays at predefined times (PTS-MFCGNNs). Firstly, leveraging the concept of predefined-time stability, we devise a fractional-order controller, establish sufficient conditions for predefined-time synchronization, and achieve synchronization within the Cohen–Grossberg drive–response system. Secondly, building upon these findings, we scrutinize the synchronization dynamics within the time domain of the PTS-MFCGNNs system. Finally, we validate our theoretical framework through numerical simulations and engage in a comprehensive discussion on predefined-time synchronization within the PTS-MFCGNNs system.

中文翻译:


基于忆阻器的时变延迟分数阶Cohen-Grossberg神经网络的预定义时间同步



本文深入研究了在预定义时间具有时变延迟的分数阶忆阻器 Cohen-Grossberg 神经网络系统 (PTS-MFCGNN) 的同步动力学。首先,利用预定义时间稳定性的概念,设计了分数阶控制器,为预定义时间同步建立了充分条件,并在Cohen-Grossberg驱动响应系统内实现了同步。其次,基于这些发现,我们仔细研究了 PTS-MFCGNN 系统时域内的同步动态。最后,我们通过数值模拟验证了我们的理论框架,并对 PTS-MFCGNN 系统内的预定义时间同步进行了全面的讨论。
更新日期:2024-08-28
down
wechat
bug