当前位置:
X-MOL 学术
›
Radiat. Phys. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Energy-saving synthesis of wurtzite ZnS nanoparticles using Yttrium as a defect regulator by hydrothermal method
Radiation Physics and Chemistry ( IF 2.8 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.radphyschem.2024.112154 E. Muhammed Jubeer , M. Aslam Manthrammel , P.A. Subha , Mohd Shkir , K.P. Biju , Meenakshi Verma , S. AlFaify
Radiation Physics and Chemistry ( IF 2.8 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.radphyschem.2024.112154 E. Muhammed Jubeer , M. Aslam Manthrammel , P.A. Subha , Mohd Shkir , K.P. Biju , Meenakshi Verma , S. AlFaify
In this work, Y-doped ZnS nanoparticles were synthesised using the hydrothermal method with doping percentages of 0.5%, 1%, 2.5%, and 5%. XRD study revealed that doping caused a phase transition from cubic to hexagonal, further confirmed by Raman analysis and TEM images. Morphological studies conducted by SEM and TEM provided insights into the structural changes. Diffused reflectance studies were used to evaluate the band gap, with values obtained as 3.33eV, 3.45 eV, 3.45 eV, 3.44 eV, and 3.37 eV for pure, 0.5%, 1%, 2.5%, and 5% Y-doped ZnS, respectively. Photoluminescence analysis revealed the presence of defect states in ZnS nanoparticles, indicated by peaks at 362 nm, 383 nm, and 390 nm in both pure and doped samples. The intensity of these peaks increased with Y doping, attaining its highest at 1% Y doping, while concentration quenching was observed at higher doping percentages. The EDAX analysis confirmed the successful integration of Y as a dopant in the ZnS lattice. These findings highlight the importance of optimizing the doping concentration to achieve the desired luminous features and provide valuable insights into the doping-dependent luminescence behaviour of Y-doped ZnS nanoparticles. The visible light photocatalytic activity of the nanoparticles was investigated, and it was revealed that the photocatalytic efficiency increased initially and then declined with the doping concentration increased. It was found that the ideal doping concentration for 93% degradation efficiency was 1%. The novelty of this work lies in developing a simple and energy-saving method for synthesizing hexagonal ZnS at low temperatures, which avoids the need for high temperatures and advanced anti-oxidation apparatus.
中文翻译:
以钇为缺陷调节剂的水热法节能合成纤锌矿ZnS纳米颗粒
本工作采用水热法合成了 Y 掺杂 ZnS 纳米粒子,掺杂比例为 0.5%、1%、2.5% 和 5%。 XRD 研究表明,掺杂导致了从立方相到六方相的转变,拉曼分析和 TEM 图像进一步证实了这一点。通过 SEM 和 TEM 进行的形态学研究提供了对结构变化的见解。漫反射研究用于评估带隙,纯、0.5%、1%、2.5% 和 5% Y 掺杂 ZnS 的带隙值为 3.33eV、3.45 eV、3.45 eV、3.44 eV 和 3.37 eV。分别。光致发光分析揭示了 ZnS 纳米粒子中存在缺陷态,纯样品和掺杂样品中 362 nm、383 nm 和 390 nm 处的峰表明了缺陷态的存在。这些峰的强度随着 Y 掺杂而增加,在 1% Y 掺杂时达到最高,而在较高掺杂百分比时观察到浓度猝灭。 EDAX 分析证实 Y 作为掺杂剂成功整合到 ZnS 晶格中。这些发现强调了优化掺杂浓度以实现所需发光特性的重要性,并为 Y 掺杂 ZnS 纳米颗粒的掺杂依赖性发光行为提供了有价值的见解。研究了纳米粒子的可见光光催化活性,结果表明,随着掺杂浓度的增加,光催化效率先增加后下降。结果发现,达到 93% 降解效率的理想掺杂浓度为 1%。这项工作的新颖之处在于开发了一种简单、节能的低温合成六方ZnS的方法,避免了对高温和先进抗氧化设备的需要。
更新日期:2024-08-30
中文翻译:
以钇为缺陷调节剂的水热法节能合成纤锌矿ZnS纳米颗粒
本工作采用水热法合成了 Y 掺杂 ZnS 纳米粒子,掺杂比例为 0.5%、1%、2.5% 和 5%。 XRD 研究表明,掺杂导致了从立方相到六方相的转变,拉曼分析和 TEM 图像进一步证实了这一点。通过 SEM 和 TEM 进行的形态学研究提供了对结构变化的见解。漫反射研究用于评估带隙,纯、0.5%、1%、2.5% 和 5% Y 掺杂 ZnS 的带隙值为 3.33eV、3.45 eV、3.45 eV、3.44 eV 和 3.37 eV。分别。光致发光分析揭示了 ZnS 纳米粒子中存在缺陷态,纯样品和掺杂样品中 362 nm、383 nm 和 390 nm 处的峰表明了缺陷态的存在。这些峰的强度随着 Y 掺杂而增加,在 1% Y 掺杂时达到最高,而在较高掺杂百分比时观察到浓度猝灭。 EDAX 分析证实 Y 作为掺杂剂成功整合到 ZnS 晶格中。这些发现强调了优化掺杂浓度以实现所需发光特性的重要性,并为 Y 掺杂 ZnS 纳米颗粒的掺杂依赖性发光行为提供了有价值的见解。研究了纳米粒子的可见光光催化活性,结果表明,随着掺杂浓度的增加,光催化效率先增加后下降。结果发现,达到 93% 降解效率的理想掺杂浓度为 1%。这项工作的新颖之处在于开发了一种简单、节能的低温合成六方ZnS的方法,避免了对高温和先进抗氧化设备的需要。