当前位置: X-MOL 学术Int. J. Numer. Methods Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal radiation, Soret and Dufour effects on MHD mixed convective Maxwell hybrid nanofluid flow under porous medium: a numerical study
International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.0 ) Pub Date : 2024-09-03 , DOI: 10.1108/hff-03-2024-0229
J. Jayaprakash , Vediyappan Govindan , S.S. Santra , S.S. Askar , Abdelaziz Foul , Susmay Nandi , Syed Modassir Hussain

Purpose

Scientists have been conducting trials to find ways to reduce fuel consumption and enhance heat transfer rates to make heating systems more efficient and cheaper. Adding solid nanoparticles to conventional liquids may greatly improve their thermal conductivity, according to the available evidence. This study aims to examine the influence of external magnetic flux on the flow of a mixed convective Maxwell hybrid non-Newtonian nanofluid over a linearly extending porous flat plate. The investigation considers the effects of thermal radiation, Dufour and Soret.

Design/methodology/approach

The mathematical model is formulated based on the fundamental assumptions of mass, energy and momentum conservation. The implicit models are epitomized by a set of interconnected nonlinear partial differential equations, which include a suitable and comparable adjustment. The numerical solution to these equations is assessed for approximate convergence by the Runge−Kutta−Fehlberg method based on the shooting technique embedded with the MATLAB software.

Findings

The findings are presented through graphical representations, offering a visual exploration of the effects of various dynamic parameters on the flow field. These parameters encompass a wide range of factors, including radiation, thermal and Brownian diffusion parameters, Eckert, Lewis and Soret numbers, magnetic parameters, Maxwell fluid parameters, Darcy numbers, thermal and solutal buoyancy factors, Dufour and Prandtl numbers. Notably, the authors observed that nanoparticles with a spherical shape exerted a significant influence on the stream function, highlighting the importance of nanoparticle geometry in fluid dynamics. Furthermore, the analysis revealed that temperature profiles of nanomaterials were notably affected by their shape factor, while concentration profiles exhibited an opposite trend, providing valuable insights into the behavior of nanofluids in porous media.

Originality/value

A distinctive aspect of the research lies in its novel exploration of the impact of external magnetic flux on the flow of a mixed convective Maxwell hybrid non-Newtonian nanofluid over a linearly extending porous flat plate. By considering variables such as solar radiation, external magnetic flux, thermal and Brownian diffusion parameters and nanoparticle shape factor, the authors ventured into uncharted territory within the realm of fluid dynamics. These variables, despite their significant relevance, have not been extensively studied in previous research, thus underscoring the originality and value of the authors’ contribution to the field.



中文翻译:


热辐射、Soret 和 Dufour 对多孔介质下 MHD 混合对流麦克斯韦混合纳米流体流动的影响:数值研究


 目的


科学家们一直在进行试验,寻找减少燃料消耗和提高传热率的方法,以使供暖系统更高效、更便宜。根据现有证据,在传统液体中添加固体纳米颗粒可以大大提高其导热性。本研究旨在研究外部磁通量对混合对流麦克斯韦混合非牛顿纳米流体在线性延伸多孔平板上流动的影响。该研究考虑了热辐射、杜福尔和索雷的影响。


设计/方法论/途径


该数学模型是根据质量、能量和动量守恒的基本假设制定的。隐式模型由一组相互关联的非线性偏微分方程来概括,其中包括适当且可比较的调整。基于嵌入 MATLAB 软件的射击技术,通过 Runge−Kutta−Fehlberg 方法评估这些方程的数值解的近似收敛性。

 发现


研究结果通过图形表示呈现,提供了各种动态参数对流场影响的可视化探索。这些参数涵盖多种因素,包括辐射、热和布朗扩散参数、埃克特、路易斯和索雷特数、磁参数、麦克斯韦流体参数、达西数、热和溶质浮力因子、杜福尔和普朗特数。值得注意的是,作者观察到球形纳米粒子对流函数产生显着影响,凸显了纳米粒子几何形状在流体动力学中的重要性。此外,分析表明,纳米材料的温度分布明显受到其形状因子的影响,而浓度分布则呈现相反的趋势,为多孔介质中纳米流体的行为提供了有价值的见解。

 原创性/价值


该研究的一个独特方面在于其对外部磁通量对混合对流麦克斯韦混合非牛顿纳米流体在线性延伸多孔平板上流动的影响的新颖探索。通过考虑太阳辐射、外部磁通量、热和布朗扩散参数以及纳米粒子形状因子等变量,作者冒险进入了流体动力学领域的未知领域。这些变量尽管具有重要的相关性,但在之前的研究中尚未得到广泛研究,从而强调了作者对该领域贡献的原创性和价值。

更新日期:2024-09-03
down
wechat
bug