当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic effect of the PMIA nanofiber membrane with a dual-oriented network structure and Li0.5Bi0.5TiO3 nanofibers for high-performance lithium metal batteries
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-09-02 , DOI: 10.1039/d4ta04745a Zhaozhao Peng , Nanping Deng , Xiaofan Feng , Junbao Kang , Tinglu Zheng , Shuaishuai Wang , Bowen Cheng , Weimin Kang
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-09-02 , DOI: 10.1039/d4ta04745a Zhaozhao Peng , Nanping Deng , Xiaofan Feng , Junbao Kang , Tinglu Zheng , Shuaishuai Wang , Bowen Cheng , Weimin Kang
Solid-state lithium metal batteries are favored for their superior energy density and safety compared to liquid batteries. However, the low ionic conductivity and weak mechanical properties of the polyethylene oxide (PEO) solid electrolyte hinders their development. In this study, poly-m-phenyleneisophthalamide (PMIA) nanofibers with a dual-oriented network and the piezoelectric ceramics Li0.5Bi0.5TiO3 (LBTO) nanofibers were integrated in a composite electrolyte. PMIA incorporation could enhance the mechanical strength, reduce the dendrite piercing risk, and homogenize lithium ions (Li+), while LBTO with its strong TFSI− adsorption could accelerate LiTFSI dissociation, promote Li+ transport, and ensure uniform dispersion. The LBTO/PMIA/PEO/LiTFSI electrolyte boasted high ionic conductivity (4.17 × 10−4 S cm−1 at 50 °C), strength (20.45 MPa), and Li+ migration (0.45 at 50 °C). In addition, the Li–Li symmetric cell could be run stably for more than 3000 h without short circuiting at 0.1 mA h cm−2. The assembled LiFePO4‖Li full cells display excellent long cycling stability at 50 °C (>500 cycles). More strikingly, the LiNi0.8Co0.1Mn0.1O2 (NCM811)‖Li full cell could also can be run for 200 cycles. This multi-functional electrolyte offers a promising approach to realizing high-performance solid-state lithium batteries.
中文翻译:
双取向网络结构PMIA纳米纤维膜与Li0.5Bi0.5TiO3纳米纤维在高性能锂金属电池中的协同效应
与液体电池相比,固态锂金属电池因其优越的能量密度和安全性而受到青睐。然而,聚环氧乙烷(PEO)固体电解质的低离子电导率和弱机械性能阻碍了其发展。在这项研究中,具有双取向网络的聚间苯二甲酰间苯二胺(PMIA)纳米纤维和压电陶瓷Li 0.5 Bi 0.5 TiO 3 (LBTO)纳米纤维被集成在复合电解质中。 PMIA的掺入可以增强机械强度,降低枝晶刺穿风险,并使锂离子(Li + )均匀化,而LBTO具有较强的TFSI -吸附作用,可以加速LiTFSI解离,促进Li +传输,并确保均匀分散。 LBTO/PMIA/PEO/LiTFSI电解质具有高离子电导率(50℃时4.17×10 -4 S cm -1 )、强度(20.45 MPa)和Li +迁移率(50℃时0.45)。此外,Li-Li对称电池可以在0.1 mA h cm -2下稳定运行3000小时以上而不发生短路。组装好的LiFePO 4 ‖Li全电池在50℃(>500次循环)下表现出优异的长循环稳定性。更引人注目的是,LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811)‖Li全电池还可以运行200个循环。 这种多功能电解质为实现高性能固态锂电池提供了一种有前景的方法。
更新日期:2024-09-02
中文翻译:
双取向网络结构PMIA纳米纤维膜与Li0.5Bi0.5TiO3纳米纤维在高性能锂金属电池中的协同效应
与液体电池相比,固态锂金属电池因其优越的能量密度和安全性而受到青睐。然而,聚环氧乙烷(PEO)固体电解质的低离子电导率和弱机械性能阻碍了其发展。在这项研究中,具有双取向网络的聚间苯二甲酰间苯二胺(PMIA)纳米纤维和压电陶瓷Li 0.5 Bi 0.5 TiO 3 (LBTO)纳米纤维被集成在复合电解质中。 PMIA的掺入可以增强机械强度,降低枝晶刺穿风险,并使锂离子(Li + )均匀化,而LBTO具有较强的TFSI -吸附作用,可以加速LiTFSI解离,促进Li +传输,并确保均匀分散。 LBTO/PMIA/PEO/LiTFSI电解质具有高离子电导率(50℃时4.17×10 -4 S cm -1 )、强度(20.45 MPa)和Li +迁移率(50℃时0.45)。此外,Li-Li对称电池可以在0.1 mA h cm -2下稳定运行3000小时以上而不发生短路。组装好的LiFePO 4 ‖Li全电池在50℃(>500次循环)下表现出优异的长循环稳定性。更引人注目的是,LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811)‖Li全电池还可以运行200个循环。 这种多功能电解质为实现高性能固态锂电池提供了一种有前景的方法。