当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multi-Pathway Chemical Recycling of Bio-Based Polycarbonates Containing Spirocyclic Acetal Structures
Macromolecules ( IF 5.1 ) Pub Date : 2024-09-02 , DOI: 10.1021/acs.macromol.4c01553 Keita Saito 1 , Fabian Eisenreich 1 , Željko Tomović 1
Macromolecules ( IF 5.1 ) Pub Date : 2024-09-02 , DOI: 10.1021/acs.macromol.4c01553 Keita Saito 1 , Fabian Eisenreich 1 , Željko Tomović 1
Affiliation
The current plastic economy heavily relies on nonrenewable fossil-based feedstocks and hence urgently needs to transition to a circular economy. This shift necessitates the utilization of renewable feedstocks for plastics manufacturing and the implementation of end-of-life strategies to promote sustainability. In this study, we present the synthesis and characterization of biobased polycarbonates containing spirocyclic acetals, which allow for multipathway and orthogonal chemical recycling. These polymers, prepared via two distinct synthetic routes, exhibit excellent thermal properties due to their rigid structures, with Tg values ranging from 154 to 192 °C. Notably, the molecular design of these poly(acetal-carbonate)s facilitates efficient and selective depolymerizations under both acidic and basic conditions through hydrolysis and transesterification, respectively, thus providing a dual closed-loop recycling system. By introducing different nucleophiles, poly(acetal-carbonate)s additionally allow for upcycling into value-added carbonate or urea derivatives. This strategic multipathway chemical recycling approach, aiming at obtaining various monomeric compounds through depolymerization, opens the door to the creation of new generations of sustainable polymer products. This advancement in circular material design emphasizes the significance of effectively managing the end-of-life stages of plastics.
中文翻译:
含螺环缩醛结构的生物基聚碳酸酯的多途径化学回收
当前的塑料经济严重依赖不可再生的化石原料,因此迫切需要向循环经济转型。这种转变需要利用可再生原料进行塑料制造,并实施报废策略以促进可持续性。在这项研究中,我们介绍了含有螺环缩醛的生物基聚碳酸酯的合成和表征,该聚碳酸酯允许多途径和正交化学回收。这些聚合物通过两种不同的合成路线制备,由于其刚性结构而表现出优异的热性能, T g值范围为 154 至 192 °C。值得注意的是,这些聚缩醛碳酸酯的分子设计有助于在酸性和碱性条件下分别通过水解和酯交换进行有效和选择性的解聚,从而提供双闭环回收系统。通过引入不同的亲核试剂,聚缩醛碳酸酯还可以升级为增值碳酸酯或脲衍生物。这种战略性多途径化学回收方法旨在通过解聚获得各种单体化合物,为创造新一代可持续聚合物产品打开了大门。循环材料设计的这一进步强调了有效管理塑料报废阶段的重要性。
更新日期:2024-09-02
中文翻译:
含螺环缩醛结构的生物基聚碳酸酯的多途径化学回收
当前的塑料经济严重依赖不可再生的化石原料,因此迫切需要向循环经济转型。这种转变需要利用可再生原料进行塑料制造,并实施报废策略以促进可持续性。在这项研究中,我们介绍了含有螺环缩醛的生物基聚碳酸酯的合成和表征,该聚碳酸酯允许多途径和正交化学回收。这些聚合物通过两种不同的合成路线制备,由于其刚性结构而表现出优异的热性能, T g值范围为 154 至 192 °C。值得注意的是,这些聚缩醛碳酸酯的分子设计有助于在酸性和碱性条件下分别通过水解和酯交换进行有效和选择性的解聚,从而提供双闭环回收系统。通过引入不同的亲核试剂,聚缩醛碳酸酯还可以升级为增值碳酸酯或脲衍生物。这种战略性多途径化学回收方法旨在通过解聚获得各种单体化合物,为创造新一代可持续聚合物产品打开了大门。循环材料设计的这一进步强调了有效管理塑料报废阶段的重要性。