当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Robust Nitrogen/Sulfur Co-Doped Carbon Frameworks as Multifunctional Coating Layer on Si Anodes Toward Superior Lithium Storage
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-02 , DOI: 10.1002/aenm.202403086 Yuanyuan Yu 1, 2 , Chen Yang 1 , Yan Jiang 1 , Zhoutai Shang 1 , Jiadeng Zhu 3, 4 , Junhua Zhang 2 , Mengjin Jiang 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-02 , DOI: 10.1002/aenm.202403086 Yuanyuan Yu 1, 2 , Chen Yang 1 , Yan Jiang 1 , Zhoutai Shang 1 , Jiadeng Zhu 3, 4 , Junhua Zhang 2 , Mengjin Jiang 1
Affiliation
Silicon (Si)-based anodes hold great potential for next-generation lithium-ion batteries (LIBs) due to their exceptional theoretical capacity. However, their practical application is hindered by the notably substantial volume expansion and unstable electrode/electrolyte interfaces during cycling, leading to rapid capacity degradation. To address these challenges, we have engineered a porous nitrogen/sulfur co-doped carbon layer (CBPOD) to uniformly encapsulate Si, providing a multifunctional protective coating. This innovative design effectively passivates the electrode/electrolyte interface and mitigates the volumetric expansion of Si. The N/S co-doping framework significantly enhances electronic and ionic conductivity. Furthermore, the carbonization process augments the elastic modulus of CBPOD and reconstructs the Si-CBPOD interface, facilitating the formation of robust chemical bonds. These features collectively contribute to the high performance of the Si-CBPOD anodes, which demonstrate a high reversible capacity of 1110.8 mAh g−1 after 1000 cycles at 4 A g−1 and an energy density of 574 Wh kg−1 with a capacity retention of over 75.6% after 300 cycles at 0.2 C. This study underscores the substantial potential of the CBPOD protective layer in enhancing the performance of Si anodes, providing a pathway for the development of composite materials with superior volumetric energy density and prolonged cyclic stability, thereby advancing high-performance LIBs.
中文翻译:
坚固的氮/硫共掺杂碳框架作为硅阳极上的多功能涂层,以实现卓越的锂存储
硅(Si)基阳极由于其卓越的理论容量而在下一代锂离子电池(LIB)方面具有巨大的潜力。然而,它们的实际应用受到循环过程中显着的体积膨胀和不稳定的电极/电解质界面的阻碍,导致容量快速下降。为了应对这些挑战,我们设计了多孔氮/硫共掺杂碳层(CBPOD)来均匀封装硅,提供多功能保护涂层。这种创新设计有效地钝化了电极/电解质界面并减轻了硅的体积膨胀。 N/S共掺杂框架显着增强了电子和离子电导率。此外,碳化过程增加了 CBPOD 的弹性模量并重建了 Si-CBPOD 界面,有利于形成牢固的化学键。这些特征共同促成了Si-CBPOD负极的高性能,在4 A g −1下循环1000次后表现出1110.8 mAh g −1的高可逆容量和574 Wh kg −1的能量密度以及容量保持率在 0.2 C 下循环 300 次后,能量密度超过 75.6%。这项研究强调了 CBPOD 保护层在增强硅阳极性能方面的巨大潜力,为开发具有优异体积能量密度和延长循环稳定性的复合材料提供了途径,从而推进高性能LIB。
更新日期:2024-09-02
中文翻译:
坚固的氮/硫共掺杂碳框架作为硅阳极上的多功能涂层,以实现卓越的锂存储
硅(Si)基阳极由于其卓越的理论容量而在下一代锂离子电池(LIB)方面具有巨大的潜力。然而,它们的实际应用受到循环过程中显着的体积膨胀和不稳定的电极/电解质界面的阻碍,导致容量快速下降。为了应对这些挑战,我们设计了多孔氮/硫共掺杂碳层(CBPOD)来均匀封装硅,提供多功能保护涂层。这种创新设计有效地钝化了电极/电解质界面并减轻了硅的体积膨胀。 N/S共掺杂框架显着增强了电子和离子电导率。此外,碳化过程增加了 CBPOD 的弹性模量并重建了 Si-CBPOD 界面,有利于形成牢固的化学键。这些特征共同促成了Si-CBPOD负极的高性能,在4 A g −1下循环1000次后表现出1110.8 mAh g −1的高可逆容量和574 Wh kg −1的能量密度以及容量保持率在 0.2 C 下循环 300 次后,能量密度超过 75.6%。这项研究强调了 CBPOD 保护层在增强硅阳极性能方面的巨大潜力,为开发具有优异体积能量密度和延长循环稳定性的复合材料提供了途径,从而推进高性能LIB。