当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergistic Regulation of Polyselenide Dissolution and Na-Ion Diffusion of Se-Vacancy-Rich Bismuth Selenide toward Ultrafast and Durable Sodium-Ion Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-09-02 , DOI: 10.1002/aenm.202402110
Zeyu Lin 1 , Wei Zhang 1 , Jian Peng 2, 3 , Qinghua Li 1 , Zhixin Liang 1 , Gaoyu Wang 1 , Junlin Wang 1 , Guang Wang 1 , Zhijiao Huang 1 , Shaoming Huang 1, 4
Affiliation  

Metal selenides (MSes) have great potential as candidate anode materials in high-specific-energy sodium-ion batteries (SIBs) but are plagued by rapid capacity degradation and slow kinetics. Here, it is reveal that the Bi2Se3 anode discharge process involves multiple-types of sodium polyselenides (Na-pSex) which suffer from terrible dissolution and shuttling properties. Based on these observations, a nanoflower-like composite of dual carbon-confined Bi2Se3−x crystallites is designed via facile defect chemistry. The robust dual N-doped carbon layer suppresses the precipitation and aggregation of Bi2Se3, significantly alleviating the dissolution and shuttle effect of Na-pSex. Theoretical calculations indicate that the pyridine/pyrrole nitrogen sites exhibit strong van der Waals resistance and chemisorption properties against Na2Se4 and Na2Se2. Furthermore, the abundant Se vacancies improve the inherent conductivity of Bi2Se3, reduce the diffusion barrier of Na+, and accelerate the reaction kinetics. Consequently, the resulting Bi2Se3−x@DNC electrode exhibits extraordinary durability (over 2000 cycles at 10.0 A g−1) and high-rate capability (354.4 mAh g−1 at 75.0 A g−1), propelling the battery performance to new heights. Encouragingly, the assembled hybrid capacitor displays competitive rate performance and an ultra-long lifespan exceeding 40 000 cycles, making the Bi2Se3−x@DNC electrode a promising candidate for SIBs.

中文翻译:


聚硒化物溶解和富含硒空位的硒化铋的钠离子扩散对超快耐用钠离子电池的协同调节



金属硒化物 (MSes) 作为高比能钠离子电池 (SIB) 中的候选负极材料具有巨大潜力,但受到容量快速降解和动力学缓慢的困扰。在这里,揭示了 Bi2Se3 阳极放电过程涉及多种类型的聚硒化钠 (Na-pSex),这些聚硒化钠具有可怕的溶解和穿梭特性。基于这些观察结果,通过简单的缺陷化学设计了一种双碳限制 Bi2Se3-x 微晶的纳米花状复合材料。稳健的双 N 掺杂碳层抑制了 Bi2Se3 的沉淀和聚集,显著减轻了 Na-pSex 的溶解和穿梭效应。理论计算表明,吡啶/吡咯氮位点对 Na2Se4 和 Na2Se2 表现出很强的范德华抗性和化学吸附性能。此外,丰富的 Se 空位提高了 Bi2Se3 的固有电导率,降低了 Na+ 的扩散势垒,并加速了反应动力学。因此,所得的 Bi2Se3-x@DNC 电极表现出非凡的耐用性(在 10.0 A g-1 下超过 2000 次循环)和高倍率能力(在 75.0 A g-1 下为 354.4 mAh g-1),将电池性能推向了新的高度。 令人鼓舞的是,组装的混合电容器显示出有竞争力的倍率性能和超过 40 000 次循环的超长使用寿命,使 Bi2Se3−x@DNC 电极成为 SIB 的有前途的候选者。
更新日期:2024-09-02
down
wechat
bug