当前位置:
X-MOL 学术
›
J. Chem. Theory Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Analytic Gradients for Equation-of-Motion Coupled Cluster with Single, Double, and Perturbative Triple Excitations
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-08-30 , DOI: 10.1021/acs.jctc.4c00752 Tingting Zhao 1 , Devin A Matthews 1
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-08-30 , DOI: 10.1021/acs.jctc.4c00752 Tingting Zhao 1 , Devin A Matthews 1
Affiliation
Understanding the process of molecular photoexcitation is crucial in various fields, including drug development, materials science, photovoltaics, and more. The electronic vertical excitation energy is a critical property, for example in determining the singlet–triplet gap of chromophores. However, a full understanding of excited-state processes requires additional explorations of the excited-state potential energy surface and electronic properties, which is greatly aided by the availability of analytic energy gradients. Owing to its robust high accuracy over a wide range of chemical problems, equation-of-motion coupled cluster with single and double excitations (EOM-CCSD) is a powerful method for predicting excited-state properties, and the implementation of analytic gradients of many EOM-CCSD variants (excitation energies, ionization potentials, electron attachment energies, etc.) along with numerous successful applications highlights the flexibility of the method. In specific cases where a higher level of accuracy is needed or in more complex electronic structures, the inclusion of triple excitations becomes essential, for example, in the EOM-CCSD* approach of Saeh and Stanton. In this work, we derive and implement for the first time the analytic gradients of EOMEE-CCSD*, which also provides a template for analytic gradients of related excited-state methods with perturbative triple excitations. The capabilities of analytic EOMEE-CCSD* gradients are illustrated by several representative examples.
中文翻译:
具有单次、双次和微扰三次激励的运动方程耦合团簇的解析梯度
了解分子光激发过程对于药物开发、材料科学、光伏等各个领域都至关重要。电子垂直激发能是一个关键特性,例如在确定发色团的单线态-三线态间隙时。然而,对激发态过程的全面理解需要对激发态势能表面和电子特性进行额外的探索,这在分析能量梯度的可用性的帮助下得到了很大的帮助。由于其在广泛的化学问题上具有强大的高精度,单双激发运动方程耦合簇(EOM-CCSD)是预测激发态性质以及实现许多化学问题的解析梯度的强大方法。 EOM-CCSD 变体(激发能、电离势、电子附着能等)以及众多成功的应用凸显了该方法的灵活性。在需要更高准确度或更复杂的电子结构的特定情况下,包含三重激发变得至关重要,例如,在 Saeh 和 Stanton 的 EOM-CCSD* 方法中。在这项工作中,我们首次推导并实现了 EOMEE-CCSD* 的解析梯度,这也为具有微扰三重激发的相关激发态方法的解析梯度提供了模板。几个代表性示例说明了分析 EOMEE-CCSD* 梯度的功能。
更新日期:2024-08-30
中文翻译:
具有单次、双次和微扰三次激励的运动方程耦合团簇的解析梯度
了解分子光激发过程对于药物开发、材料科学、光伏等各个领域都至关重要。电子垂直激发能是一个关键特性,例如在确定发色团的单线态-三线态间隙时。然而,对激发态过程的全面理解需要对激发态势能表面和电子特性进行额外的探索,这在分析能量梯度的可用性的帮助下得到了很大的帮助。由于其在广泛的化学问题上具有强大的高精度,单双激发运动方程耦合簇(EOM-CCSD)是预测激发态性质以及实现许多化学问题的解析梯度的强大方法。 EOM-CCSD 变体(激发能、电离势、电子附着能等)以及众多成功的应用凸显了该方法的灵活性。在需要更高准确度或更复杂的电子结构的特定情况下,包含三重激发变得至关重要,例如,在 Saeh 和 Stanton 的 EOM-CCSD* 方法中。在这项工作中,我们首次推导并实现了 EOMEE-CCSD* 的解析梯度,这也为具有微扰三重激发的相关激发态方法的解析梯度提供了模板。几个代表性示例说明了分析 EOMEE-CCSD* 梯度的功能。