当前位置: X-MOL 学术Biomass Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advancements in electrochemical energy storage: A review of biomass-derived anode and cathode for electric vehicles battery
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2024-08-29 , DOI: 10.1016/j.biombioe.2024.107348
Damilare Samuel Oyebamiji , Davannendran Chandran , Revathi Raviadaran

This paper aims to critically assess the potential of biomass-derived carbon material for battery development, with a particular emphasis towards electric vehicles (EV) application. Existing studies highlighted that pretreatment, carbonization, activation and conductive dopants, influenced pore size, surface area, conductivity and degree of graphitization of carbon material, which subsequently influenced the energy density and lifecycles of battery which are essential for EV application. However, limited emphasis on electrochemical characterization of batteries at actual operational temperatures for EV presents challenge for their utilization. Also, limited information on self-discharging which is a critical factor affecting battery material properties, hinders observation of material degradation at elevated temperatures and the decline in capacity, both crucial for EV application. While change in electrochemical stability and battery conductivity remained the focus for researchers, long life cycle, high energy density and low cost were achieved without considering production and process optimization for scalability and actual operating condition of battery for EV application. Future research should prioritize optimizing synthesis processes to enhance the performance of biomass-derived carbon. Exploring various biomass types, adjusting pyrolysis and activation temperatures and employing chemical activation are essential steps to improve battery properties and meet the stringent demands of EV application.

中文翻译:


电化学储能的进展:电动汽车电池生物质阳极和阴极的综述



本文旨在批判性地评估生物质衍生碳材料用于电池开发的潜力,特别强调电动汽车(EV)的应用。现有研究强调,预处理、碳化、活化和导电掺杂剂会影响碳材料的孔径、表面积、电导率和石墨化程度,从而影响电动汽车应用所必需的电池的能量密度和生命周期。然而,对电动汽车实际工作温度下电池电化学特性的重视有限,这给电池的使用带来了挑战。此外,自放电是影响电池材料性能的关键因素,有关自放电的信息有限,阻碍了对高温下材料降解和容量下降的观察,而这对于电动汽车应用至关重要。虽然电化学稳定性和电池电导率的变化仍然是研究人员关注的焦点,但在没有考虑电动汽车应用电池的可扩展性和实际运行条件的生产和工艺优化的情况下,实现了长生命周期、高能量密度和低成本。未来的研究应优先考虑优化合成工艺,以提高生物质衍生碳的性能。探索各种生物质类型、调整热解和活化温度以及采用化学活化是提高电池性能和满足电动汽车应用严格要求的重要步骤。
更新日期:2024-08-29
down
wechat
bug