当前位置: X-MOL 学术Appl. Mathmat. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonconvex low-rank regularization method for video snapshot compressive imaging
Applied Mathematical Modelling ( IF 4.4 ) Pub Date : 2024-08-22 , DOI: 10.1016/j.apm.2024.115645
Min Li , Huanran Hu , Ming Yang , Yu Han

The reconstruction of snapshot compressive imaging (SCI) presents a significant challenge in signal processing. The primary goal of SCI is to employ a low-dimensional sensor to capture high-dimensional data in a compressed form. As a result, compared to traditional compressive sensing, SCI emphasizes capturing structural information and enhancing the reconstruction quality of high-dimensional videos and hyperspectral images. This paper proposes a novel SCI reconstruction method by integrating non-convex regularization approximation in conjunction with rank minimization. Furthermore, we address the characterization of structural information by leveraging nonlocal self-similarity across video frames to improve the reconstruction quality. We also develop an optimization algorithm based on the alternating direction method of multipliers (ADMM) to solve the model and provide a convergence algorithm analysis. Extensive experiments demonstrate that the proposed approach can potentially reconstruct SCI effectively.

中文翻译:


用于视频快照压缩成像的非凸低秩正则化方法



快照压缩成像 (SCI) 的重建在信号处理中提出了重大挑战。SCI 的主要目标是采用低维传感器以压缩形式捕获高维数据。因此,与传统的压缩传感相比,SCI 强调捕获结构信息并提高高维视频和高光谱图像的重建质量。本文提出了一种新的 SCI 重建方法,将非凸正则化近似与秩最小化相结合。此外,我们通过利用视频帧之间的非局部自相似性来提高重建质量,从而解决结构信息的表征问题。我们还开发了一种基于交替方向乘子法 (ADMM) 的优化算法来求解模型并提供收敛算法分析。大量实验表明,所提出的方法有可能有效地重建 SCI。
更新日期:2024-08-22
down
wechat
bug