当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Greenhouse gas emission prediction and impact analysis of dual-fuel engine
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.psep.2024.08.079
Hui Chen , Bingxin Wang , Zhencai Huang

This study explored the profound influence of greenhouse gas (GHG) emissions on global climate change by introducing an innovative prediction model. Utilizing a backpropagation (BP) neural network with dual-hidden layer, optimized through simulated annealing particle swarm optimization (SA-PSO), the model predicted emissions from a diesel/natural gas dual-fuel engine at 1500 rpm across four torque levels: 400, 800, 1200, and 1600 N·m. The inputs included engine torque, injection timing, pressure, excess air coefficient, and natural gas substitution ratio, with CO2 and CH4 as outputs. Evaluation metrics—the coefficients of determination (R²) of 0.9975 for CO2 and 0.9951 for CH4, the root mean square error (RMSE) of 0.062 % and 278.04 ppm, and the mean relative error (MRE) of 0.82 % and 5.35 %, respectively—demonstrated the model’s accuracy. A quantitative analysis using the Mean Influence Value (MIV) algorithm showed engine torque’s pivotal role in emissions at a medium engine speed with contribution rates of 48.5 % and 40.3 % for CO2 and CH4 emissions, respectively. Notably, at a lower load condition (engine torque = 400 N·m), the natural gas substitution ratio was identified as having the most substantial impact on emissions. This study presents a novel approach to predicting and reducing GHG emissions from dual-fuel engines.

中文翻译:


双燃料发动机温室气体排放预测及影响分析



本研究通过引入创新的预测模型,探讨了温室气体 (GHG) 排放对全球气候变化的深远影响。该模型利用具有双隐藏层的反向传播 (BP) 神经网络,通过模拟退火粒子群优化 (SA-PSO) 进行优化,预测了柴油/天然气双燃料发动机在 1500 rpm 转速下在四个扭矩水平(400、800、1200 和 1600 N·m)下的排放。输入包括发动机扭矩、喷油正时、压力、过剩空气系数和天然气替代比,其中 CO2 和 CH4 作为输出。评估指标 — CO2 的决定系数 (R²) 为 0.9975,CH4 的决定系数 (R²) 为 0.9951,均方根误差 (RMSE) 分别为 0.062 % 和 278.04 ppm,平均相对误差 (MRE) 分别为 0.82% 和 5.35 %——证明了模型的准确性。使用平均影响值 (MIV) 算法的定量分析显示,发动机扭矩在中等发动机转速下的排放中起着关键作用,CO2 和 CH4 排放的贡献率分别为 48.5% 和 40.3%。值得注意的是,在较低负载条件下(发动机扭矩 = 400 N·m),天然气替代比被确定为对排放的影响最大。本研究提出了一种预测和减少双燃料发动机温室气体排放的新方法。
更新日期:2024-08-30
down
wechat
bug