当前位置: X-MOL 学术Med. Image Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Domain adaptation strategies for 3D reconstruction of the lumbar spine using real fluoroscopy data
Medical Image Analysis ( IF 10.7 ) Pub Date : 2024-08-22 , DOI: 10.1016/j.media.2024.103322
Sascha Jecklin 1 , Youyang Shen 1 , Amandine Gout 1 , Daniel Suter 1 , Lilian Calvet 1 , Lukas Zingg 1 , Jennifer Straub 2 , Nicola Alessandro Cavalcanti 1 , Mazda Farshad 1 , Philipp Fürnstahl 1 , Hooman Esfandiari 1
Affiliation  

In this study, we address critical barriers hindering the widespread adoption of surgical navigation in orthopedic surgeries due to limitations such as time constraints, cost implications, radiation concerns, and integration within the surgical workflow. Recently, our work X23D showed an approach for generating 3D anatomical models of the spine from only a few intraoperative fluoroscopic images. This approach negates the need for conventional registration-based surgical navigation by creating a direct intraoperative 3D reconstruction of the anatomy. Despite these strides, the practical application of X23D has been limited by a significant domain gap between synthetic training data and real intraoperative images.

中文翻译:


使用真实透视数据进行腰椎 3D 重建的域适应策略



在这项研究中,我们解决了由于时间限制、成本影响、辐射问题以及手术工作流程中的整合等限制而阻碍手术导航在骨科手术中广泛采用的关键障碍。最近,我们的 X23D 工作展示了一种仅通过少量术中透视图像即可生成脊柱 3D 解剖模型的方法。这种方法通过创建直接的术中解剖结构 3D 重建,消除了传统的基于配准的手术导航的需要。尽管取得了这些进步,X23D 的实际应用仍然受到合成训练数据和真实术中图像之间的显着域差距的限制。
更新日期:2024-08-22
down
wechat
bug