当前位置:
X-MOL 学术
›
Comput. Math. Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Superconvergence analysis of finite element approximations to Maxwell's equations in both metamaterials and PMLs
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-08-16 , DOI: 10.1016/j.camwa.2024.07.034 Jichun Li
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-08-16 , DOI: 10.1016/j.camwa.2024.07.034 Jichun Li
This paper is concerned about the superconvergence analysis for time-dependent Maxwell's equations solved by arbitrary order and basis functions on rectangular and cuboid elements. One-order higher in spatial convergence is proved for leap-frog finite element schemes developed for solving both Maxwell's equations and perfectly matched layer (PML) models. Numerical results for the 2-D PML model solved by the lowest-order rectangular edge element are presented to support our analysis.
中文翻译:
超材料和 PML 中麦克斯韦方程组有限元逼近的超收敛分析
本文关注矩形和长方体单元上任意阶和基函数求解的时变麦克斯韦方程组的超收敛分析。为求解麦克斯韦方程组和完美匹配层 (PML) 模型而开发的蛙式有限元方案的空间收敛性提高了一阶。给出了由最低阶矩形边缘单元求解的二维 PML 模型的数值结果来支持我们的分析。
更新日期:2024-08-16
中文翻译:
超材料和 PML 中麦克斯韦方程组有限元逼近的超收敛分析
本文关注矩形和长方体单元上任意阶和基函数求解的时变麦克斯韦方程组的超收敛分析。为求解麦克斯韦方程组和完美匹配层 (PML) 模型而开发的蛙式有限元方案的空间收敛性提高了一阶。给出了由最低阶矩形边缘单元求解的二维 PML 模型的数值结果来支持我们的分析。