当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sulfur defect engineering boosted nitrogen activation over FeS2 for efficient electrosynthesis of ammonia
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-08-30 , DOI: 10.1016/j.ces.2024.120664
Jiawei Lin , Xiaoyun Lin , Suwei Lu , Wanru Liao , Tingting Qi , Shijing Liang , Zhi-Jian Zhao , Lilong Jiang

Electrocatalytic nitrogen (N) reduction to ammonia (NH) reaction (eNRR) supplies a promising alternative to the Haber-Bosch technology. However, the dissociation of NN bond hinders its development. Herein, sulfur vacancies are introduced into FeS for promoting N activation and thus stimulating the eNRR progress. Experimental investigations and density functional theory (DFT) calculations reveal that the electrons could transfer from Fe 3d orbits to N 2π* orbital, thus facilitating the cracking of inert N molecules. And the electron transfer is easier for those Fe atoms with S vacancies in adjacent positions. Furthermore, we find that eNRR process on the FeS surface follows the distal and alternating hybrid pathway. Also, the water molecules in the electrolyte facilitate the first hydrogenation of N (*N → *NNH). Notably, FeS with rich sulfur vacancies exhibits an excellent NH yield rate of 67.5 μg h mg, which outperforms most of the reported eNRR activities of Fe-based catalysts.

中文翻译:


硫缺陷工程增强了 FeS2 上的氮活化,以实现氨的高效电合成



电催化氮 (N) 还原为氨 (NH) 反应 (eNRR) 为 Haber-Bosch 技术提供了一种有前景的替代方案。然而,NN键的解离阻碍了其发展。在此,将硫空位引入FeS中以促进N活化,从而刺激eNRR进展。实验研究和密度泛函理论(DFT)计算表明电子可以从Fe 3d 轨道转移到N 2π* 轨道,从而促进惰性N分子的裂解。而且相邻位置有S空位的Fe原子更容易发生电子转移。此外,我们发现 FeS 表面的 eNRR 过程遵循远端和交替混合途径。此外,电解质中的水分子促进 N (*N → *NNH) 的首次氢化。值得注意的是,具有丰富硫空位的 FeS 表现出 67.5 μg h mg 的优异 NH 产率,优于大多数已报道的铁基催化剂的 eNRR 活性。
更新日期:2024-08-30
down
wechat
bug