当前位置:
X-MOL 学术
›
Chem. Eng. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dielectric barrier discharge plasma for chlorobenzene removal: Performance optimization, process modeling, and toxicity evaluation
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-08-28 , DOI: 10.1016/j.ces.2024.120660 Miaomiao Qu , Zhirong Sun , Zhuowei Cheng , Jingkai Zhao , Jianming Yu , Renlei Zhou , Juping You , Wenjun Wang , Jianmeng Chen
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-08-28 , DOI: 10.1016/j.ces.2024.120660 Miaomiao Qu , Zhirong Sun , Zhuowei Cheng , Jingkai Zhao , Jianming Yu , Renlei Zhou , Juping You , Wenjun Wang , Jianmeng Chen
Bio-purification has been recognized as an effective method of removal of volatile organic pollutants (VOCs), yet exist a technical bottleneck of low removal efficiency in the treatment of high toxicity and low water-soluble VOCs, especially chlorobenzene (CB). Herein, dielectric barrier discharge (DBD) technology was used as a pre-treatment technology, and the effect of process parameters (specific input of energy (SIE), inlet concentration of CB, humidity, and discharge length) of DBD on the removal performance of CB was analyzed, in order to investigate the feasibility of DBD as a pre-treatment approach for bio-purification. Taking energy yield, by-product analysis and exhaust evaluation as considerations, an SIE of 1,131.57 J·L, an inlet CB concentration of 300 ppm, a humidity of 50 %, and a discharge length of 10 cm were selected as the most suitable experimental conditions for the air DBD reactor. The temperature of gas flow was analyzed. Results suggested that DBD have no adverse thermal effect on the subsequent biotechnology (decreased by about 8 K during the discharge process). The temperature change caused by the degradation of CB (e.g., phenyl ring-opening and other processes) accounts for about 90 % of the total temperature change, where remaining part of temperature decreased caused by the large number of active substances produced by electron excitation, collision and cracking during discharge. The regulation of short-life active substances (e.g., ·NO, ·NO,·OH, and O·) further reduced the toxicity of the outlet gas generated by DBD through affect the contents the long-life active substances (e.g., HO, and O). This study provides a better understanding of the feasibility of DBD as a treatment for bio-purification and a new coupling technology for the effective removal of CB.
中文翻译:
用于去除氯苯的介质阻挡放电等离子体:性能优化、过程建模和毒性评估
生物净化已被公认为是去除挥发性有机污染物(VOCs)的有效方法,但在处理高毒性、低水溶性VOCs,特别是氯苯(CB)时,存在去除效率低的技术瓶颈。本文采用介质阻挡放电(DBD)技术作为预处理技术,研究了DBD工艺参数(比能量输入(SIE)、CB入口浓度、湿度和放电长度)对去除性能的影响。对CB进行了分析,以研究DBD作为生物净化预处理方法的可行性。综合能源产量、副产物分析和尾气评价等因素,选择SIE为1,131.57 J·L、入口CB浓度为300 ppm、湿度为50 %、排放长度为10 cm作为最合适的实验。空气DBD反应器的条件分析气流的温度。结果表明,DBD对后续生物技术没有不利的热影响(在放电过程中降低了约8 K)。 CB的降解(如苯环开环等过程)引起的温度变化约占总温度变化的90%,其余部分因电子激发产生大量活性物质而导致温度下降,放电时碰撞、破裂。对短寿命活性物质(如·NO、·NO、·OH、O·)的调节,通过影响长寿命活性物质(如H2O、和O)。 这项研究让我们更好地了解 DBD 作为生物净化处理方法的可行性以及有效去除 CB 的新耦合技术。
更新日期:2024-08-28
中文翻译:
用于去除氯苯的介质阻挡放电等离子体:性能优化、过程建模和毒性评估
生物净化已被公认为是去除挥发性有机污染物(VOCs)的有效方法,但在处理高毒性、低水溶性VOCs,特别是氯苯(CB)时,存在去除效率低的技术瓶颈。本文采用介质阻挡放电(DBD)技术作为预处理技术,研究了DBD工艺参数(比能量输入(SIE)、CB入口浓度、湿度和放电长度)对去除性能的影响。对CB进行了分析,以研究DBD作为生物净化预处理方法的可行性。综合能源产量、副产物分析和尾气评价等因素,选择SIE为1,131.57 J·L、入口CB浓度为300 ppm、湿度为50 %、排放长度为10 cm作为最合适的实验。空气DBD反应器的条件分析气流的温度。结果表明,DBD对后续生物技术没有不利的热影响(在放电过程中降低了约8 K)。 CB的降解(如苯环开环等过程)引起的温度变化约占总温度变化的90%,其余部分因电子激发产生大量活性物质而导致温度下降,放电时碰撞、破裂。对短寿命活性物质(如·NO、·NO、·OH、O·)的调节,通过影响长寿命活性物质(如H2O、和O)。 这项研究让我们更好地了解 DBD 作为生物净化处理方法的可行性以及有效去除 CB 的新耦合技术。