当前位置: X-MOL 学术Appl. Math. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A matrix-separation-based integral inequality for aperiodic sampled-data synchronization of delayed neural networks considering communication delay
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-08-27 , DOI: 10.1016/j.amc.2024.129032
H.-Z. Wang , X.-C. Shangguan , D. Xiong , Y.-H. An , L. Jin

This paper achieves the synchronization of delayed neural networks (DNNs) considering aperiodic sampled-data control and communication delay. First of all, based on the master-slave DNNs with aperiodic sampling synchronization controller, a synchronization error system is constructed. Then, an augmented functional containing both the error state and its derivative is constructed. Compared with the existing researches, the augmented functional introduces more cross information of error states to the criterion. Next, an integral inequality based on the separation of internal integral variable and matrix is developed. Compared to the inequalities that treat the internal variable and the matrix as unified ones, the developed inequality provides a tighter estimate of the derivative of the augmented functional. On this basis, a criterion with less conservative is developed for the aperiodic sampled-data synchronization of DNNs considering communication delay. Finally, to indicate the superiority of the developed method on improving the acceptable sampling upper bound of synchronization, three numerical examples are provided.

中文翻译:


考虑通信延迟的延迟神经网络非周期性采样数据同步的基于矩阵分离的积分不等式



该文考虑了非周期性采样数据控制和通信延迟,实现了延迟神经网络 (DNN) 的同步。首先,基于具有非周期性采样同步控制器的主从DNN,构建了同步误差系统。然后,构造一个包含误差状态及其导数的增强函数。与现有研究相比,增强泛函为准则引入了更多的误差状态交叉信息。接下来,开发基于内部积分变量和矩阵分离的积分不等式。与将内部变量和矩阵视为统一不等式相比,开发的不等式提供了更严格的增广泛函导数估计。在此基础上,为考虑通信时延的 DNN 的非周期性采样数据同步开发了一个不太保守的准则。最后,为了说明所开发的方法在提高可接受的同步采样上限方面的优越性,提供了三个数值示例。
更新日期:2024-08-27
down
wechat
bug