当前位置:
X-MOL 学术
›
Prog. Mater. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Wood elasticity and compressible wood-based materials: Functional design and applications
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-08-19 , DOI: 10.1016/j.pmatsci.2024.101354 Zongying Fu , Yun Lu , Guofang Wu , Long Bai , Daniel Barker-Rothschild , Jianxiong Lyu , Shouxin Liu , Orlando J. Rojas
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-08-19 , DOI: 10.1016/j.pmatsci.2024.101354 Zongying Fu , Yun Lu , Guofang Wu , Long Bai , Daniel Barker-Rothschild , Jianxiong Lyu , Shouxin Liu , Orlando J. Rojas
The typical strength of wood makes it suitable as a structural material. Under load, natural wood exhibits a small strain within the elastic range. Such elasticity is associated with fast recovery materials, which hold relevance to applications that include piezoelectric sensors and actuators, bionic systems, soft robots and artificial muscles. Any progress to advance such advanced functions requires control on the hierarchical structure of wood as well as the multiscale and multicomponent interactions affecting its elasticity and compressibility. Herein, we review the key structural features, from the molecular to the macroscopic levels, that define wood elasticity and compressibility. They relate to the assembly pattern of wood’s lignocellulosic components, corresponding helical arrangement in the cell wall, and the anisotropy that controls the elastic and compression properties. We summarize the research progress achieved so far in the area, exploring the origins and feasible routes to modulate wood compressibility. Finally, we provide critical perspective on future impact of the area along with new applications of wood-based structures that take advantages of their latent elasticity.
中文翻译:
木材弹性与可压缩木质材料:功能设计与应用
木材的典型强度使其适合作为结构材料。在负载下,天然木材在弹性范围内表现出较小的应变。这种弹性与快速恢复材料有关,这些材料与压电传感器和执行器、仿生系统、软机器人和人造肌肉等应用相关。推进此类先进功能的任何进展都需要控制木材的层次结构以及影响其弹性和可压缩性的多尺度和多组分相互作用。在此,我们回顾了从分子到宏观水平定义木材弹性和可压缩性的关键结构特征。它们与木材木质纤维素成分的组装模式、细胞壁中相应的螺旋排列以及控制弹性和压缩特性的各向异性有关。我们总结了该领域迄今为止取得的研究进展,探索了调节木材压缩性的起源和可行途径。最后,我们对该地区的未来影响以及利用其潜在弹性的木结构的新应用提供了批判性的观点。
更新日期:2024-08-19
中文翻译:
木材弹性与可压缩木质材料:功能设计与应用
木材的典型强度使其适合作为结构材料。在负载下,天然木材在弹性范围内表现出较小的应变。这种弹性与快速恢复材料有关,这些材料与压电传感器和执行器、仿生系统、软机器人和人造肌肉等应用相关。推进此类先进功能的任何进展都需要控制木材的层次结构以及影响其弹性和可压缩性的多尺度和多组分相互作用。在此,我们回顾了从分子到宏观水平定义木材弹性和可压缩性的关键结构特征。它们与木材木质纤维素成分的组装模式、细胞壁中相应的螺旋排列以及控制弹性和压缩特性的各向异性有关。我们总结了该领域迄今为止取得的研究进展,探索了调节木材压缩性的起源和可行途径。最后,我们对该地区的未来影响以及利用其潜在弹性的木结构的新应用提供了批判性的观点。