当前位置: X-MOL 学术IEEE Trans. Power Electr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Automated Identification of a Hybrid VSI Error Model for PMSM Drives
IEEE Transactions on Power Electronics ( IF 6.6 ) Pub Date : 2024-08-30 , DOI: 10.1109/tpel.2024.3452124
Binyu Xia 1 , Xueqing Gao 1 , Jun Zhang 1 , Mingming Zhang 2
Affiliation  

Voltage source inverters (VSIs) in permanent magnet synchronous motor (PMSM) drives are susceptible to errors caused by dead-time insertion and other nonideal characteristics. In this article, we develop a hybrid VSI error model for the PMSM drives, which consists of a linear model in the small current range and a look-up table model in the medium to large current range. This model is identified by using linear regression and extended state observer (ESO) techniques, before the motor is in online working condition. We also investigate the equilibrium, convergence, and robustness of estimation error dynamics, and provide gain design guidelines for the ESO in both sensor and sensorless cases. Experimental studies demonstrate the efficacy of the compensation strategy with this hybrid error model.

中文翻译:


PMSM 驱动器混合 VSI 误差模型的自动识别



永磁同步电机 (PMSM) 驱动器中的电压源逆变器 (VSI) 很容易受到死区时间插入和其他非理想特性引起的错误的影响。在本文中,我们开发了一种用于 PMSM 驱动器的混合 VSI 误差模型,该模型由小电流范围内的线性模型和中到大电流范围内的查找表模型组成。在电机处于在线工作状态之前,使用线性回归和扩展状态观测器(ESO)技术来识别该模型。我们还研究了估计误差动态的平衡、收敛和鲁棒性,并为有传感器和无传感器情况下的 ESO 提供增益设计指南。实验研究证明了这种混合误差模型补偿策略的有效性。
更新日期:2024-08-30
down
wechat
bug