当前位置:
X-MOL 学术
›
J. Am. Stat. Assoc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Model-based causal feature selection for general response types
Journal of the American Statistical Association ( IF 3.0 ) Pub Date : 2024-08-30 , DOI: 10.1080/01621459.2024.2395588 Lucas Kook 1 , Sorawit Saengkyongam 2 , Anton Rask Lundborg 3 , Torsten Hothorn 4 , Jonas Peters 2
Journal of the American Statistical Association ( IF 3.0 ) Pub Date : 2024-08-30 , DOI: 10.1080/01621459.2024.2395588 Lucas Kook 1 , Sorawit Saengkyongam 2 , Anton Rask Lundborg 3 , Torsten Hothorn 4 , Jonas Peters 2
Affiliation
Discovering causal relationships from observational data is a fundamental yet challenging task. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which...
中文翻译:
针对一般响应类型的基于模型的因果特征选择
从观测数据中发现因果关系是一项基本但具有挑战性的任务。不变因果预测(ICP,Peters 等,2016)是一种因果特征选择方法,...
更新日期:2024-08-31
中文翻译:
针对一般响应类型的基于模型的因果特征选择
从观测数据中发现因果关系是一项基本但具有挑战性的任务。不变因果预测(ICP,Peters 等,2016)是一种因果特征选择方法,...