当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-throughput screening of carbon nitride single-atom catalysts for nitrogen fixation based on machine learning
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-08-31 , DOI: 10.1039/d4ta04370g
Lintao Xu , Yu Hong Huang , Haiping Lin , Ruhai Du , Min Wang , Fei Ma , Xiumei Wei , Gangqiang Zhu , Jian-Min Zhang

Compared with the traditional electrocatalyst screening of the nitrogen reduction reaction (NRR), machine learning (ML) has achieved high-throughput screening with less computational cost. In this paper, 140 TM@g-CxNy single-atom catalysts (SACs) are constructed for the NRR. The deep neural network (DNN) classification model and the extreme gradient boosting (XGBoost) model are selected from different models. A total of 10 features are proposed based on anchoring TM atom, coordination environment and adsorption intermediates. The former model distinguishes qualified and non-qualified catalysts with an accuracy rate of 87.5%, while the latter model predicts the free energy of NRR with a fitting coefficient of 0.82 on the test set. The N[triple bond, length as m-dash]N bond length and the number of outermost d electrons of TM (Nd) are found to be the most important features for both models. Moreover, the N[triple bond, length as m-dash]N bond length, Nd, and adsorption energy of *N2H (ΔEad[N2H]) are proved to reflect the degree of nitrogen (N2) activation and serve as NRR descriptors. The moderate activation and half-filled or nearly half-filled d-orbitals of the TM atom (Nd ≈ 4) favor the NRR process. Among the 20 screened catalysts, Re@g-C4N3 shows the best catalytic activity, with a limiting potential (UL) of only −0.13 V under implicit solvation. The activity origin is illustrated by the electronic properties and bond changes of NRR intermediates. This research provides a new approach for the high-throughput design and screening of SACs by ML based on DFT.

中文翻译:


基于机器学习的氮化碳单原子固氮催化剂高通量筛选



与传统的氮还原反应(NRR)电催化剂筛选相比,机器学习(ML)以更少的计算成本实现了高通量筛选。在本文中,为 NRR 构建了 140 个 TM@gC x N y单原子催化剂(SAC)。深度神经网络(DNN)分类模型和极限梯度提升(XGBoost)模型是从不同的模型中选取的。基于锚定TM原子、配位环境和吸附中间体,总共提出了10个特征。前一个模型区分合格和不合格催化剂的准确率为87.5%,而后一个模型预测NRR的自由能,在测试集上的拟合系数为0.82。然后 [triple bond, length as m-dash] N 键长和 TM 最外层 d 电子数 ( N d ) 被发现是两个模型最重要的特征。此外,N [triple bond, length as m-dash] N键长、 N d和*N 2 H的吸附能( ΔE ad [N 2 H])被证明反映了氮(N 2 )的活化程度并可作为NRR描述符。 TM原子的适度活化和半填充或接近半填充的d轨道( N d ≈ 4)有利于NRR过程。 在20种筛选的催化剂中,Re@gC 4 N 3显示出最好的催化活性,隐式溶剂化下的极限电势( UL )仅为-0.13 V。 NRR 中间体的电子特性和键的变化说明了活性起源。该研究为基于DFT的机器学习高通量设计和筛选SAC提供了一种新方法。
更新日期:2024-08-31
down
wechat
bug