当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Superb energy density of PbHfO3-based antiferroelectric ceramics via regulating the antiferroelectric–ferroelectric transition energy barrier
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-08-30 , DOI: 10.1039/d4ta04971c
Jiawen Hu , Zihao Zheng , Tao Zhang , Ling Lv , Zhixin Zhou , Jinjun Liu , Peng Li , Yunye Cao , Jinming Guo , Zhongbin Pan

Antiferroelectric (AFE) ceramics are excellent candidates for developing capacitors with enhanced energy storage capabilities due to their unique field-induced phase transitions. Research showed that AFE materials with large energy barriers typically exhibit better AFE stability. However, the higher intrinsic potential barriers make it difficult for the polar phase to cross the barrier after the electric field is removed, significantly reducing the maximum polarization (Pmax). Herein, we propose a universal approach to introducing mutually exclusive interaction ions at both the A-site and B-site to regulate the AFE-FE transition energy barrier in PbHfO3-based ceramics to markedly enhance capacitive performance. By precisely tuning the position of the AFE and FE states in the energy paths, we achieve a large phase-switching field (∼509 kV cm−1) and a high Pmax (∼47.07 μC cm−2), accompanied by an ultrahigh recoverable energy storage density (∼16.05 J cm−3). In terms of practical applications, the ceramics display commendable frequency and cycling stability, as well as a rapid discharge time of 106 ns and a high-power density of 193.5 MW cm−3. This work presents an innovative strategy for synergistically enhancing the energy storage performance of AFE ceramics, potentially advancing the development of advanced dielectric capacitors.

中文翻译:


通过调节反铁电-铁电转变能垒实现PbHfO3基反铁电陶瓷的优异能量密度



反铁电 (AFE) 陶瓷因其独特的场致相变而成为开发具有增强储能能力的电容器的绝佳候选者。研究表明,具有大能垒的 AFE 材料通常表现出更好的 AFE 稳定性。然而,较高的本征势垒使得极性相在电场去除后难以穿过势垒,从而显着降低了最大极化( P max )。在此,我们提出了一种通用方法,在A位和B位引入互斥的相互作用离子来调节PbHfO 3基陶瓷中的AFE-FE跃迁能垒,从而显着增强电容性能。通过精确调整能量路径中 AFE 和 FE 态的位置,我们实现了大的相转换场(∼509 kV cm -1 )和高P max (∼47.07 μC cm -2 ),并伴随着超高的可恢复的能量存储密度(∼16.05 J cm -3 )。在实际应用中,陶瓷表现出值得称赞的频率和循环稳定性,以及106 ns的快速放电时间和193.5 MW cm -3的高功率密度。这项工作提出了一种协同增强 AFE 陶瓷储能性能的创新策略,有可能推动先进介电电容器的发展。
更新日期:2024-08-30
down
wechat
bug