当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Scaling Up Stability: Navigating from Lab Insights to Robust Oxygen Evolution Electrocatalysts for Industrial Water Electrolysis
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-08-29 , DOI: 10.1002/aenm.202402886 Faiza Meharban 1, 2 , Chao Lin 1, 2 , Xiaotong Wu 1 , Lei Tan 1 , Haifeng Wang 1 , Weibo Hu 1 , Dequan Zhou 3 , Xiaopeng Li 1, 2 , Wei Luo 1, 2
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-08-29 , DOI: 10.1002/aenm.202402886 Faiza Meharban 1, 2 , Chao Lin 1, 2 , Xiaotong Wu 1 , Lei Tan 1 , Haifeng Wang 1 , Weibo Hu 1 , Dequan Zhou 3 , Xiaopeng Li 1, 2 , Wei Luo 1, 2
Affiliation
In the pursuit of sustainable hydrogen production via water electrolysis, paramount importance of electrocatalyst stability emerges as a defining factor for long-term industrial viability. A thorough understanding and enhancement of stability not only ensure extended catalyst lifetimes but also pave the way for consistent and efficient hydrogen generation. This review focuses on the pivotal role of stability in determining the practical viability of oxygen evolution electrocatalysts (OECs) for large-scale applications in water electrolysis for hydrogen production. The paper explores the pivotal role of stability over initial activity, citing examples and hypothetical scenarios. First, figures of merits for stability evaluation of the electrocatalyst are explained along with the available benchmarking protocols for stability evaluation. Further, the text delves into various strategies that can enhance the stability of the electrocatalyst which include self-healing/regeneration pathway, oxygen evolution reaction (OER) mechanism optimization to achieve highly stable OER and stabilization of active metals atoms within the electrocatalyst to inhibit dissolution as a way forward for industrial application. The interplay of stability, activity, and cost is also explained to suit the industrial application of the electrocatalyst. Lastly, it outlines challenges, prospects, and future directions, presenting a guide for advancing OECs in the hydrogen generation landscape.
中文翻译:
提高稳定性:从实验室洞察到用于工业水电解的稳健析氧电催化剂
在追求通过水电解可持续生产氢气的过程中,电催化剂稳定性成为长期工业可行性的决定性因素。对稳定性的透彻理解和增强不仅可以确保延长催化剂的使用寿命,还可以为一致和高效的氢气生产铺平道路。本文重点介绍稳定性在确定析氧电催化剂 (OEC) 在电解水制氢中大规模应用的实际可行性方面的关键作用。本文探讨了稳定性相对于初始活动的关键作用,并引用了示例和假设情景。首先,解释了电催化剂稳定性评估的品质因数以及可用的稳定性评估基准协议。此外,本文深入探讨了可以提高电催化剂稳定性的各种策略,包括自修复/再生途径、氧析出反应 (OER) 机理优化以实现高度稳定的 OER 和稳定电催化剂内活性金属原子以抑制溶解,作为工业应用的前进方向。还解释了稳定性、活性和成本的相互作用,以适应电催化剂的工业应用。最后,它概述了挑战、前景和未来方向,为在氢能生产领域推进 OEC 提供了指南。
更新日期:2024-08-29
中文翻译:
提高稳定性:从实验室洞察到用于工业水电解的稳健析氧电催化剂
在追求通过水电解可持续生产氢气的过程中,电催化剂稳定性成为长期工业可行性的决定性因素。对稳定性的透彻理解和增强不仅可以确保延长催化剂的使用寿命,还可以为一致和高效的氢气生产铺平道路。本文重点介绍稳定性在确定析氧电催化剂 (OEC) 在电解水制氢中大规模应用的实际可行性方面的关键作用。本文探讨了稳定性相对于初始活动的关键作用,并引用了示例和假设情景。首先,解释了电催化剂稳定性评估的品质因数以及可用的稳定性评估基准协议。此外,本文深入探讨了可以提高电催化剂稳定性的各种策略,包括自修复/再生途径、氧析出反应 (OER) 机理优化以实现高度稳定的 OER 和稳定电催化剂内活性金属原子以抑制溶解,作为工业应用的前进方向。还解释了稳定性、活性和成本的相互作用,以适应电催化剂的工业应用。最后,它概述了挑战、前景和未来方向,为在氢能生产领域推进 OEC 提供了指南。