当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Iron Single Atom Catalysts for Electrochemical Ammonia Synthesis: Toward Carbon Free Hydrogen Storage
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-08-29 , DOI: 10.1002/aenm.202402205 Radhika Nittoor‐Veedu 1, 2 , Xiaohui Ju 2 , Martin Pumera 1, 2, 3
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-08-29 , DOI: 10.1002/aenm.202402205 Radhika Nittoor‐Veedu 1, 2 , Xiaohui Ju 2 , Martin Pumera 1, 2, 3
Affiliation
Ammonia plays a pivotal role globally, profoundly impacting human activities, especially in agriculture, chemical production, and the textile sector. As the most efficient carbon-free hydrogen carrier, ammonia is vital for transporting energy over long distances. Haber-Bosch process producing ammonia from nitrogen accounts for ≈2% of global energy production. Electrochemical conversion offers a sustainable, long-term solution for ammonia synthesis due to its environmentally friendly characteristics. This approach complements the traditional Haber-Bosch process, known for its harsh operational conditions and significant CO2 emissions. Iron (Fe), serving as the active catalytic site in the Haber-Bosch process and a vital nitrogenase component for biological nitrogen fixation, exhibits superiority over other non-noble metals in catalyzing ammonia synthesis. Therefore, investigating single-atom Fe is attracting significant attention for its potential application in electrochemical ammonia synthesis. In this review, the recent advancements in the design and synthesis of single-atom Fe-based catalysts for electrochemical ammonia production are summarized. The topic of synthesis and characterization of Fe single-atom catalysts, as well as their application in the electrochemical reduction of nitrogen and nitrate to ammonia is covered. Additionally, insights are provided into the current challenges and considerations for future directions aimed at designing efficiently Fe single atom-based catalysts.
中文翻译:
用于电化学氨合成的铁单原子催化剂:迈向无碳储氢
氨在全球范围内发挥着举足轻重的作用,深刻影响着人类活动,特别是在农业、化学品生产和纺织行业。作为最有效的无碳氢载体,氨对于长距离运输能量至关重要。哈伯-博世工艺利用氮气生产氨约占全球能源产量的 2%。电化学转化由于其环保特性,为氨合成提供了可持续、长期的解决方案。该方法补充了传统的哈伯-博世工艺,该工艺以其恶劣的操作条件和大量的CO 2排放而闻名。铁(Fe)作为哈伯-博世过程中的活性催化位点和生物固氮的重要固氮酶成分,在催化氨合成方面表现出优于其他非贵金属的优越性。因此,研究单原子 Fe 因其在电化学氨合成中的潜在应用而引起了人们的广泛关注。在这篇综述中,总结了用于电化学氨生产的单原子铁基催化剂的设计和合成的最新进展。涵盖了 Fe 单原子催化剂的合成和表征及其在氮气和硝酸盐电化学还原为氨中的应用。此外,还对当前的挑战和未来方向的考虑提供了见解,旨在有效设计基于铁单原子的催化剂。
更新日期:2024-08-29
中文翻译:
用于电化学氨合成的铁单原子催化剂:迈向无碳储氢
氨在全球范围内发挥着举足轻重的作用,深刻影响着人类活动,特别是在农业、化学品生产和纺织行业。作为最有效的无碳氢载体,氨对于长距离运输能量至关重要。哈伯-博世工艺利用氮气生产氨约占全球能源产量的 2%。电化学转化由于其环保特性,为氨合成提供了可持续、长期的解决方案。该方法补充了传统的哈伯-博世工艺,该工艺以其恶劣的操作条件和大量的CO 2排放而闻名。铁(Fe)作为哈伯-博世过程中的活性催化位点和生物固氮的重要固氮酶成分,在催化氨合成方面表现出优于其他非贵金属的优越性。因此,研究单原子 Fe 因其在电化学氨合成中的潜在应用而引起了人们的广泛关注。在这篇综述中,总结了用于电化学氨生产的单原子铁基催化剂的设计和合成的最新进展。涵盖了 Fe 单原子催化剂的合成和表征及其在氮气和硝酸盐电化学还原为氨中的应用。此外,还对当前的挑战和未来方向的考虑提供了见解,旨在有效设计基于铁单原子的催化剂。