当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polytypic metal chalcogenide nanocrystals
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-08-30 , DOI: 10.1039/d3cs01095c
Liang Wu 1 , Yi Li 1 , Guo-Qiang Liu 1 , Shu-Hong Yu 1, 2
Affiliation  

By engineering chemically identical but structurally distinct materials into intricate and sophisticated polytypic nanostructures, which often surpass their pure phase objects and even produce novel physical and chemical properties, exciting applications in the fields of photovoltaics, electronics and photocatalysis can be achieved. In recent decades, various methods have been developed for synthesizing a library of polytypic nanocrystals encompassing IV, III–V and II–VI polytypic semiconductors. The exceptional performances of polytypic metal chalcogenide nanocrystals have been observed, making them highly promising candidates for applications in photonics and electronics. However, achieving high-precision control over the morphology, composition, crystal structure, size, homojunctions, and periodicity of polytypic metal chalcogenide nanostructures remains a significant synthetic challenge. This review article offers a comprehensive overview of recent progress in the synthesis and control of polytypic metal chalcogenide nanocrystals using colloidal synthetic strategies. Starting from a concise introduction on the crystal structures of metal chalcogenides, the subsequent discussion delves into the colloidal synthesis of polytypic metal chalcogenide nanocrystals, followed by an in-depth exploration of the key factors governing polytypic structure construction. Subsequently, we provide comprehensive insights into the physical properties of polytypic metal chalcogenide nanocrystals, which exhibit strong correlations with their applications. Thereafter, we emphasize the significance of polytypic nanostructures in various applications, such as photovoltaics, photocatalysis, transistors, thermoelectrics, stress sensors, and the electrocatalytic hydrogen evolution. Finally, we present a summary of the recent advancements in this research field and provide insightful perspectives on the forthcoming challenges, opportunities, and future research directions.

中文翻译:


多型金属硫族化物纳米晶



通过将化学性质相同但结构不同的材料设计成复杂而精密的多型纳米结构,这些纳米结构通常超越其纯相物体,甚至产生新颖的物理和化学性质,可以在光伏、电子和光催化领域实现令人兴奋的应用。近几十年来,人们开发了各种方法来合成包含 IV、III-V 和 II-VI 多型半导体的多型纳米晶体库。人们已经观察到多型金属硫族化物纳米晶体的优异性能,使其成为光子学和电子学应用中非常有前途的候选者。然而,实现对多型金属硫族化物纳米结构的形貌、组成、晶体结构、尺寸、同质结和周期性的高精度控制仍然是一个重大的合成挑战。这篇综述文章全面概述了利用胶体合成策略合成和控制多型金属硫族化物纳米晶体的最新进展。从简要介绍金属硫族化物的晶体结构开始,随后的讨论深入探讨了多型金属硫族化物纳米晶体的胶体合成,进而深入探讨了控制多型结构构建的关键因素。随后,我们对多型金属硫族化物纳米晶体的物理性质进行了全面的了解,这些物理性质与其应用表现出很强的相关性。此后,我们强调多型纳米结构在各种应用中的重要性,例如光伏、光催化、晶体管、热电、应力传感器和电催化析氢。 最后,我们总结了该研究领域的最新进展,并对即将到来的挑战、机遇和未来的研究方向提供了富有洞察力的观点。
更新日期:2024-08-30
down
wechat
bug