Nature Reviews Materials ( IF 79.8 ) Pub Date : 2024-08-29 , DOI: 10.1038/s41578-024-00706-w Berthold H. Rimmler , Banabir Pal , Stuart S. P. Parkin
Spintronics aims to go beyond the charge-based paradigm of silicon-based microelectronics by utilizing the spin degree of freedom for memory, storage and computing applications. State-of-the-art spintronic devices rely on the manipulation of magnetic textures by spin torques that are generated from electrical currents within ferromagnets (FMs) (spin-transfer torque) or proximal heavy metals (spin-orbit torque). Although these concepts have led to important commercial applications, the use of FMs poses challenges owing to their stray fields, relatively slow dynamics and limited thermal stability. To overcome these challenges, new materials are needed, especially those that display negligible stray fields such as antiferromagnets (AFs). In this regard, synthetic AFs have been vitally important since their use in the very first spintronic field sensors and memories. Collinear AFs have found applications in stabilizing magnetic textures via interfacial exchange bias. Going beyond these classes of AFs, the family of non-collinear AFs (NCAFs) with triangular spin textures has attractive properties, some of them even reminiscent of FMs. These include, for example, large anomalous Hall and Nernst effects, and substantial magneto-optical responses, despite their nearly fully compensated magnetization. Thus, one can anticipate their use in substituting FMs in future spintronic devices. Furthermore, these novel AFs convert electrical currents to spin currents with unique symmetries, which may allow for new ways to manipulate spin textures. Here, we review recent developments in non-collinear antiferromagnetic spintronics. Emphasis is placed on spin current generation, switching of spin textures and applications in magnetic random access memory and racetrack memory, as well as so-far unexplored materials. We show that although key components of spintronic devices based on NCAFs have been demonstrated, a wide range of potential materials remain to be explored and many open questions remain to be answered. Thus, the field of NCAFs is a vibrant and exciting subfield of spintronics with much potential for next-generation memory and computing technologies.
中文翻译:
非共线反铁磁自旋电子学
自旋电子学旨在通过利用内存、存储和计算应用的自旋自由度来超越硅基微电子学的基于电荷的范式。最先进的自旋电子器件依赖于通过铁磁体(FM)(自旋转移扭矩)或近端重金属(自旋轨道扭矩)内的电流产生的自旋扭矩来操纵磁性纹理。尽管这些概念已经带来了重要的商业应用,但由于其杂散场、相对较慢的动力学和有限的热稳定性,FM 的使用带来了挑战。为了克服这些挑战,需要新材料,特别是那些杂散场可以忽略不计的材料,例如反铁磁体(AF)。在这方面,合成 AF 自从用于第一个自旋电子场传感器和存储器以来就变得至关重要。共线 AF 已在通过界面交换偏置稳定磁性纹理方面得到应用。除了这些类别的 AF 之外,具有三角形自旋纹理的非共线 AF (NCAF) 系列也具有吸引人的特性,其中一些甚至让人想起 FM。例如,这些包括大的反常霍尔效应和能斯特效应,以及大量的磁光响应,尽管它们的磁化强度几乎完全补偿。因此,人们可以预见它们将在未来的自旋电子器件中替代调频器件。此外,这些新颖的 AF 将电流转换为具有独特对称性的自旋电流,这可能会提供操纵自旋纹理的新方法。在这里,我们回顾了非共线反铁磁自旋电子学的最新进展。 重点是自旋电流的产生、自旋纹理的切换以及在磁性随机存取存储器和跑道存储器中的应用,以及迄今为止尚未探索的材料。我们表明,虽然基于 NCAF 的自旋电子器件的关键组件已经得到证明,但仍有大量潜在材料有待探索,许多悬而未决的问题仍有待回答。因此,NCAF 领域是一个充满活力且令人兴奋的自旋电子学子领域,在下一代内存和计算技术方面具有巨大潜力。