当前位置:
X-MOL 学术
›
IEEE J. Sel. Area. Comm.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimal Harvest-Then-Transmit Scheduling for Throughput Maximization in Time-Varying RF Powered Systems
IEEE Journal on Selected Areas in Communications ( IF 13.8 ) Pub Date : 2024-08-29 , DOI: 10.1109/jsac.2024.3431569 Feng Shan 1 , Junzhou Luo 1 , Qiao Jin 1 , Liwen Cao 1 , Weiwei Wu 1 , Zhen Ling 1 , Fang Dong 1
IEEE Journal on Selected Areas in Communications ( IF 13.8 ) Pub Date : 2024-08-29 , DOI: 10.1109/jsac.2024.3431569 Feng Shan 1 , Junzhou Luo 1 , Qiao Jin 1 , Liwen Cao 1 , Weiwei Wu 1 , Zhen Ling 1 , Fang Dong 1
Affiliation
Energy harvesting is a promising technique to address the energy hunger problem for thousands of wireless devices. In Radio Frequency (RF) energy harvesting systems, a wireless device first harvests energy and then transmits data with this energy, hence the ‘harvest-then-transmit’ (HTT) principle is widely adopted. We must carefully design the HTT schedule, i.e., schedule the timing between harvesting and transmission, and decide the data transmission power such that the throughput can be maximized with the limited harvested energy. Distinct from existing work, we assume energy harvested from RF sources is time-varying, which is more practical but more difficult to handle. We first discover a surprising result that the optimal transmission power is independent of the transmission time, but solely depends on the RF harvesting power, for a simple case when the energy harvesting is stable. We then obtain an optimal offline HTT-scheduling for the general case that allows the RF harvesting power to vary with time. To the best of our knowledge, it is the first optimal HTT-scheduling algorithm that achieves maximum data throughput for time-varying RF powered systems. Finally, an efficient online heuristic algorithm is designed based on the offline optimality properties. Simulations show that the proposed online algorithm has superior performance, which achieves more than 90% of the offline maximum throughput in most cases.
中文翻译:
最佳采集后发射调度,可在时变射频供电系统中实现吞吐量最大化
能量收集是一种很有前途的技术,可以解决数千台无线设备的能源饥饿问题。在射频 (RF) 能量收集系统中,无线设备首先收集能量,然后利用这些能量传输数据,因此“先收集后传输”(HTT) 原理被广泛采用。我们必须仔细设计 HTT 时间表,即安排收获和传输之间的时间,并确定数据传输功率,以便用有限的收获能量实现吞吐量最大化。与现有工作不同,我们假设从射频源收集的能量是随时间变化的,这更实用但更难处理。我们首先发现了一个令人惊讶的结果,即最佳传输功率与传输时间无关,而完全取决于射频收集功率,对于能量收集稳定的简单情况。然后,我们获得一般情况下的最佳离线 HTT 调度,允许 RF 收集功率随时间变化。据我们所知,这是第一个为时变射频供电系统实现最大数据吞吐量的最佳 HTT 调度算法。最后,基于离线最优性属性设计了一种高效的在线启发式算法。仿真结果表明,所提出的在线算法具有优越的性能,在大多数情况下可以实现 90% 以上的离线最大吞吐量。
更新日期:2024-08-29
中文翻译:
最佳采集后发射调度,可在时变射频供电系统中实现吞吐量最大化
能量收集是一种很有前途的技术,可以解决数千台无线设备的能源饥饿问题。在射频 (RF) 能量收集系统中,无线设备首先收集能量,然后利用这些能量传输数据,因此“先收集后传输”(HTT) 原理被广泛采用。我们必须仔细设计 HTT 时间表,即安排收获和传输之间的时间,并确定数据传输功率,以便用有限的收获能量实现吞吐量最大化。与现有工作不同,我们假设从射频源收集的能量是随时间变化的,这更实用但更难处理。我们首先发现了一个令人惊讶的结果,即最佳传输功率与传输时间无关,而完全取决于射频收集功率,对于能量收集稳定的简单情况。然后,我们获得一般情况下的最佳离线 HTT 调度,允许 RF 收集功率随时间变化。据我们所知,这是第一个为时变射频供电系统实现最大数据吞吐量的最佳 HTT 调度算法。最后,基于离线最优性属性设计了一种高效的在线启发式算法。仿真结果表明,所提出的在线算法具有优越的性能,在大多数情况下可以实现 90% 以上的离线最大吞吐量。