当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Harnessing two-dimensional electron gas in oxide heterostructures for integrated neuromorphic architecture and logic operations on a single chip
Applied Physics Letters ( IF 3.5 ) Pub Date : 2024-08-29 , DOI: 10.1063/5.0219906
Anshu Gupta 1 , Amit Vashist 1 , Suvankar Chakraverty 1
Affiliation  

Neuromorphic electronics, inspired by the complexity of the biological brain, hold promise for revolutionizing information technology by enabling more efficient computing paradigms. Here, we report the potential of oxide heterostructure materials as building blocks for synapses in neuromorphic computer networks. Our approach involves utilizing two-dimensional electron gas (2DEG) within the oxide heterostructure EuO–KTaO3 (KTO), which exhibits optoelectronic properties essential for emulating key cognitive functions such as sensory perception, learning, and memory. The 2DEG at the EuO–KTO interface demonstrates the ability to switch from volatile to nonvolatile resistive states as the gate voltage sweeps using an optical signal as stimuli, unlike memristors using compliance current. Our single device not only accurately replicates the short- and long-term plasticity seen in biological synapses but also performs logic gate operations, enhancing its versatility and functionality.

中文翻译:


利用氧化物异质结构中的二维电子气体在单个芯片上集成神经形态架构和逻辑操作



受生物大脑复杂性的启发,神经形态电子学有望通过实现更高效的计算范式来彻底改变信息技术。在这里,我们报道了氧化物异质结构材料作为神经形态计算机网络中突触构建块的潜力。我们的方法涉及在氧化物异质结构 EuO-KTaO3 (KTO) 中利用二维电子气 (2DEG),它表现出对模拟关键认知功能(如感官知觉、学习和记忆)至关重要的光电特性。EuO-KTO 接口处的 2DEG 展示了当栅极电压扫描时使用光信号作为激励时从易失性电阻状态切换到非易失性电阻状态的能力,这与使用顺应电流的忆阻器不同。我们的单个设备不仅可以准确复制生物突触中的短期和长期可塑性,还可以执行逻辑门操作,增强其多功能性和功能。
更新日期:2024-08-29
down
wechat
bug