当前位置:
X-MOL 学术
›
J. Chem. Theory Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Ionization Energies from GW and Hartree–Fock Theory: Polarizability, Screening, and Self-Energy Vertex Corrections
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-08-27 , DOI: 10.1021/acs.jctc.4c00795 Charles H Patterson 1
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2024-08-27 , DOI: 10.1021/acs.jctc.4c00795 Charles H Patterson 1
Affiliation
Accurate prediction of electron removal and addition energies is essential for reproducing neutral excitation spectra in molecules using Bethe–Salpeter equation methods. A Hartree–Fock starting point for GW/BSE calculations, combined with a random phase approximation (RPA) polarizability in the screened interaction, W, is well-known to overestimate neutral excitation energies. Using a Hartree–Fock starting point, we apply several different approximations for W to molecules in the Quest-3 database [Loos et al. J. Chem. Theory Comput. 2020, 16, 1711]. W is calculated using polarizabilities in RPA and time-dependent HF approximations. Inclusion of screened electron–hole attraction in the polarizability yields valence ionization energies in better agreement with experimental values and ADC(3) calculations than the more commonly applied RPA polarizability. Quasiparticle weights are also in better agreement with ADC(3) values when electron–hole attraction is included in W. Shake-up excitations for the 1π levels in benzene and azines are indicated only when electron–hole attraction is included. Ionization energies derived from HF eigenvalues via Koopmans theorem for molecules with nitrogen or oxygen lone pairs have the largest differences from experimental values in the molecules considered, leading to incorrect ordering of nonbonding and π bonding levels. Inclusion of electron–hole attraction in the polarizability results in correct ordering of ionization energies and marked improvement in agreement with experimental data. Vertex corrections to the self-energy further improve agreement with experimental ionization energies for these localized states.
中文翻译:
GW 和 Hartree-Fock 理论的分子电离能:极化率、筛选和自能顶点校正
准确预测电子去除和加成能对于使用 Bethe-Salpeter 方程方法在分子中重现中性激发光谱至关重要。众所周知,GW/BSE 计算的 Hartree-Fock 起点与屏蔽相互作用中的随机相位近似 (RPA) 极化率 W 相结合,会高估中性激发能量。使用 Hartree-Fock 起点,我们将 W 的几种不同的近似值应用于 Quest-3 数据库中的分子 [Loos et al. J. Chem. Theory Comput.2020, 16, 1711]。W 是使用 RPA 和时间依赖性 HF 近似中的极化率计算的。与更常用的 RPA 极化率相比,在极化率中包含筛选的电子-空穴吸引可以产生与实验值和 ADC(3) 计算更好的价电离能。当电子-空穴吸引包含在 W 中时,准粒子权重也与 ADC(3) 值更一致。苯和嗪中 1π 能级的振荡激发仅在包括电子-空穴吸引时表示。对于具有氮或氧孤对电子的分子,通过 Koopmans 定理从 HF 特征值得出的电离能与所考虑分子的实验值差异最大,从而导致非键合能级和π键能级的顺序不正确。在极化率中包含电子-空穴吸引导致电离能的正确排序,并与实验数据一致,显着改善。对自能的顶点校正进一步提高了与这些局部状态的实验电离能的一致性。
更新日期:2024-08-27
中文翻译:
GW 和 Hartree-Fock 理论的分子电离能:极化率、筛选和自能顶点校正
准确预测电子去除和加成能对于使用 Bethe-Salpeter 方程方法在分子中重现中性激发光谱至关重要。众所周知,GW/BSE 计算的 Hartree-Fock 起点与屏蔽相互作用中的随机相位近似 (RPA) 极化率 W 相结合,会高估中性激发能量。使用 Hartree-Fock 起点,我们将 W 的几种不同的近似值应用于 Quest-3 数据库中的分子 [Loos et al. J. Chem. Theory Comput.2020, 16, 1711]。W 是使用 RPA 和时间依赖性 HF 近似中的极化率计算的。与更常用的 RPA 极化率相比,在极化率中包含筛选的电子-空穴吸引可以产生与实验值和 ADC(3) 计算更好的价电离能。当电子-空穴吸引包含在 W 中时,准粒子权重也与 ADC(3) 值更一致。苯和嗪中 1π 能级的振荡激发仅在包括电子-空穴吸引时表示。对于具有氮或氧孤对电子的分子,通过 Koopmans 定理从 HF 特征值得出的电离能与所考虑分子的实验值差异最大,从而导致非键合能级和π键能级的顺序不正确。在极化率中包含电子-空穴吸引导致电离能的正确排序,并与实验数据一致,显着改善。对自能的顶点校正进一步提高了与这些局部状态的实验电离能的一致性。