当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Superstable Small-Molecule Quinone Cathode Enabled by Host–Guest Interactions for Fast-Kinetics Zinc-Organic Batteries at Low Temperature
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-08-27 , DOI: 10.1021/acsenergylett.4c01692 Jin Yang 1 , Rong Tang 1 , Yuanhong Kang 1 , Minghao Zhang 1 , Guanhong Chen 1 , Zeheng Lv 1 , Zhipeng Wen 2 , Cheng Chao Li 2 , Yang Yang 1 , Jinbao Zhao 1
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-08-27 , DOI: 10.1021/acsenergylett.4c01692 Jin Yang 1 , Rong Tang 1 , Yuanhong Kang 1 , Minghao Zhang 1 , Guanhong Chen 1 , Zeheng Lv 1 , Zhipeng Wen 2 , Cheng Chao Li 2 , Yang Yang 1 , Jinbao Zhao 1
Affiliation
Aqueous zinc-organic batteries, featuring safe aqueous electrolytes and cost-effective materials, demonstrate broad application prospects. However, small-molecule organic cathodes encounter critical challenges, including poor electronic conductivity and severe dissolution issues. Herein, a small-molecule quinone guest (sodium anthraquinone-2-sulfonaterationate, SAS) is incorporated with a conductive host (reduced graphene oxide, rGO) through noncovalent bonding to obtain a free-standing SAS@rGO electrode. Theoretical calculations and experimental characterizations indicate host–guest interactions prevent the dissolution of active material and facilitate electron transport. Furthermore, various in/ex situ characterizations reveal that SAS@rGO remains stable during cycling, maintaining a high capacity retention of 90.4% after 300 cycles even at 0.5 C. Moreover, 1,4-butyrolactone is adopted as cosolvent to break the hydrogen bonding network, ensuring rapid ion transport kinetics at low temperatures. Combining the principles of host–guest and solvation chemistry synergistically, the Zn//SAS@rGO battery achieves exceptional cycling stability for over 3000 cycles at 1 A g–1 and −40 °C.
中文翻译:
通过主客体相互作用实现超稳定小分子醌阴极,实现低温下快速动力学有机锌电池
水系锌有机电池具有安全的水系电解质和高性价比的材料,展现出广阔的应用前景。然而,小分子有机阴极遇到了严峻的挑战,包括电子传导性差和严重的溶解问题。在此,小分子醌客体(蒽醌-2-磺酸钠,SAS)通过非共价键合与导电主体(还原氧化石墨烯,rGO)结合,得到独立的SAS@rGO电极。理论计算和实验表征表明主客体相互作用可以防止活性材料的溶解并促进电子传输。此外,各种原位/异位表征表明,SAS@rGO在循环过程中保持稳定,即使在0.5 C下循环300次后仍保持90.4%的高容量保留率。此外,采用1,4-丁内酯作为共溶剂来破坏氢键网络,确保低温下快速的离子传输动力学。 Zn//SAS@rGO电池协同结合主客体和溶剂化化学原理,在1 A g –1和-40 °C下实现了超过3000次循环的卓越循环稳定性。
更新日期:2024-08-27
中文翻译:
通过主客体相互作用实现超稳定小分子醌阴极,实现低温下快速动力学有机锌电池
水系锌有机电池具有安全的水系电解质和高性价比的材料,展现出广阔的应用前景。然而,小分子有机阴极遇到了严峻的挑战,包括电子传导性差和严重的溶解问题。在此,小分子醌客体(蒽醌-2-磺酸钠,SAS)通过非共价键合与导电主体(还原氧化石墨烯,rGO)结合,得到独立的SAS@rGO电极。理论计算和实验表征表明主客体相互作用可以防止活性材料的溶解并促进电子传输。此外,各种原位/异位表征表明,SAS@rGO在循环过程中保持稳定,即使在0.5 C下循环300次后仍保持90.4%的高容量保留率。此外,采用1,4-丁内酯作为共溶剂来破坏氢键网络,确保低温下快速的离子传输动力学。 Zn//SAS@rGO电池协同结合主客体和溶剂化化学原理,在1 A g –1和-40 °C下实现了超过3000次循环的卓越循环稳定性。