当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Significantly Enhanced Performance of Protonic Ceramic Fuel Cells by Laser Engineering the Electrolyte/Cathode Interface
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-08-26 , DOI: 10.1021/acsenergylett.4c01785 Tianyi Zhou 1 , Hua Huang 1 , Yuqing Meng 1 , Jacob Conrad 1 , Minda Zou 1 , Zeyu Zhao 1 , Kyle S. Brinkman 1 , Jianhua Tong 1
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-08-26 , DOI: 10.1021/acsenergylett.4c01785 Tianyi Zhou 1 , Hua Huang 1 , Yuqing Meng 1 , Jacob Conrad 1 , Minda Zou 1 , Zeyu Zhao 1 , Kyle S. Brinkman 1 , Jianhua Tong 1
Affiliation
Protonic ceramic fuel cells have attracted much attention due to their good performance at intermediate temperatures (400–700 °C). However, the highly resistive electrolyte-cathode interface has been discovered to be a crucial obstacle inhibiting further cell improvements in performance. Herein, using a model cell material system of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ electrolyte, 40 wt % BaCe0.7Zr0.1Y0.1Yb0.1O3-δ + 60 wt % NiO anode, and BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode, we proved that the laser ablation of electrolyte surfaces could accurately remove chemistry discrepancy, increase microroughness, and create versatile patterns for engineering electrolyte/cathode interfaces toward decreased ohmic and polarization resistances. The cells with laser cross-patterned interfaces quadrupled the peak power density of those with pristine interfaces, achieving around 1.4 W/cm2 at 650 °C, among the highest performance regions. The stability testing for 180 h showed no noticeable performance degradation. This laser engineering process is more scalable and ubiquitous than the recently reported chemical-processing methodologies and is suitable for manufacturing a wide range of solid oxide cells.
中文翻译:
通过激光工程电解质/阴极界面显着增强质子陶瓷燃料电池的性能
质子陶瓷燃料电池因其在中间温度(400-700℃)下的良好性能而备受关注。然而,高电阻电解质-阴极界面被发现是阻碍电池性能进一步提高的关键障碍。这里,使用BaCe 0.7 Zr 0.1 Y 0.1 Yb 0.1 O 3-δ电解质、40 wt% BaCe 0.7 Zr 0.1 Y 0.1 Yb 0.1 O 3-δ + 60 wt% NiO 阳极和 BaCo 0.4 Fe 0.4的模型电池材料系统。 Zr 0.1 Y 0.1 O 3-δ阴极,我们证明电解质表面的激光烧蚀可以准确消除化学差异,增加微观粗糙度,并为工程电解质/阴极界面创建通用图案,以降低欧姆电阻和极化电阻。具有激光交叉图案界面的电池的峰值功率密度是具有原始界面的电池的四倍,在 650 °C 时达到约 1.4 W/cm 2 ,属于性能最高的区域。 180小时的稳定性测试表明没有明显的性能下降。这种激光工程工艺比最近报道的化学加工方法更具可扩展性和普遍性,并且适合制造各种固体氧化物电池。
更新日期:2024-08-26
中文翻译:
通过激光工程电解质/阴极界面显着增强质子陶瓷燃料电池的性能
质子陶瓷燃料电池因其在中间温度(400-700℃)下的良好性能而备受关注。然而,高电阻电解质-阴极界面被发现是阻碍电池性能进一步提高的关键障碍。这里,使用BaCe 0.7 Zr 0.1 Y 0.1 Yb 0.1 O 3-δ电解质、40 wt% BaCe 0.7 Zr 0.1 Y 0.1 Yb 0.1 O 3-δ + 60 wt% NiO 阳极和 BaCo 0.4 Fe 0.4的模型电池材料系统。 Zr 0.1 Y 0.1 O 3-δ阴极,我们证明电解质表面的激光烧蚀可以准确消除化学差异,增加微观粗糙度,并为工程电解质/阴极界面创建通用图案,以降低欧姆电阻和极化电阻。具有激光交叉图案界面的电池的峰值功率密度是具有原始界面的电池的四倍,在 650 °C 时达到约 1.4 W/cm 2 ,属于性能最高的区域。 180小时的稳定性测试表明没有明显的性能下降。这种激光工程工艺比最近报道的化学加工方法更具可扩展性和普遍性,并且适合制造各种固体氧化物电池。