当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Toward Accurate Photoluminescence Nanothermometry Using Rare-Earth Doped Nanoparticles for Biomedical Applications
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-08-27 , DOI: 10.1021/acs.accounts.4c00342 Miao Liu 1 , Jinyang Liang 1 , Fiorenzo Vetrone 1
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-08-27 , DOI: 10.1021/acs.accounts.4c00342 Miao Liu 1 , Jinyang Liang 1 , Fiorenzo Vetrone 1
Affiliation
Photoluminescence nanothermometry can detect the local temperature at the submicrometer scale with minimal contact with the object under investigation. Owing to its high spatial resolution, this technique shows great potential in biomedicine in both fundamental studies as well as preclinical research. Photoluminescence nanothermometry exploits the temperature-dependent optical properties of various nanoscale optical probes including organic fluorophores, quantum dots, and carbon nanostructures. At the vanguard of these diverse optical probes, rare-earth doped nanoparticles (RENPs) have demonstrated remarkable capabilities in photoluminescence nanothermometry. They distinguish themselves from other luminescent nanoprobes owning to their unparalleled and versatile optical properties that include narrow emission bandwidths, high photostability, tunable lifetimes from microseconds to milliseconds, multicolor emissions spanning the ultraviolet, visible, and near-infrared (NIR) regions, and the ability to undergo upconversion, all with excitation of a single, biologically friendly NIR wavelength. Recent advancements in the design of novel RENPs have led to new fundamental breakthroughs in photoluminescence nanothermometry. Moreover, driven by their excellent biocompatibility, both in vitro and in vivo, their implementation in biomedical applications has also gained significant traction. However, these nanoprobes face limitations caused by the complex biological environments, including absorption and scattering of various biomolecules as well as interference from different tissues, which limit the spatial resolution and detection sensitivity in RENP temperature sensing.
中文翻译:
使用稀土掺杂纳米颗粒进行生物医学应用的精确光致发光纳米测温
光致发光纳米测温法可以在与所研究的物体接触最少的情况下检测亚微米尺度的局部温度。由于其高空间分辨率,该技术在生物医学的基础研究和临床前研究中都显示出巨大的潜力。光致发光纳米测温法利用各种纳米级光学探针(包括有机荧光团、量子点和碳纳米结构)的温度依赖性光学特性。作为这些不同光学探针的先锋,稀土掺杂纳米粒子(RENP)在光致发光纳米测温中表现出了卓越的能力。它们与其他发光纳米探针的区别在于其无与伦比的多功能光学特性,包括窄发射带宽、高光稳定性、从微秒到毫秒的可调寿命、跨越紫外线、可见光和近红外 (NIR) 区域的多色发射,以及能够进行上转换,所有这些都通过单一的、生物友好的近红外波长的激发来实现。新型 RENP 设计的最新进展为光致发光纳米测温技术带来了新的根本性突破。此外,由于其在体外和体内均具有出色的生物相容性,它们在生物医学应用中的应用也获得了巨大的关注。然而,这些纳米探针面临着复杂生物环境带来的限制,包括各种生物分子的吸收和散射以及来自不同组织的干扰,这限制了RENP温度传感的空间分辨率和检测灵敏度。
更新日期:2024-08-27
中文翻译:
使用稀土掺杂纳米颗粒进行生物医学应用的精确光致发光纳米测温
光致发光纳米测温法可以在与所研究的物体接触最少的情况下检测亚微米尺度的局部温度。由于其高空间分辨率,该技术在生物医学的基础研究和临床前研究中都显示出巨大的潜力。光致发光纳米测温法利用各种纳米级光学探针(包括有机荧光团、量子点和碳纳米结构)的温度依赖性光学特性。作为这些不同光学探针的先锋,稀土掺杂纳米粒子(RENP)在光致发光纳米测温中表现出了卓越的能力。它们与其他发光纳米探针的区别在于其无与伦比的多功能光学特性,包括窄发射带宽、高光稳定性、从微秒到毫秒的可调寿命、跨越紫外线、可见光和近红外 (NIR) 区域的多色发射,以及能够进行上转换,所有这些都通过单一的、生物友好的近红外波长的激发来实现。新型 RENP 设计的最新进展为光致发光纳米测温技术带来了新的根本性突破。此外,由于其在体外和体内均具有出色的生物相容性,它们在生物医学应用中的应用也获得了巨大的关注。然而,这些纳米探针面临着复杂生物环境带来的限制,包括各种生物分子的吸收和散射以及来自不同组织的干扰,这限制了RENP温度传感的空间分辨率和检测灵敏度。