当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Making 2D Materials Sparkle in Energy Storage via Assembly
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-08-27 , DOI: 10.1021/acs.accounts.4c00403 Yu Long 1, 2, 3 , Ying Tao 1 , Wei Lv 4 , Quan-Hong Yang 1, 2
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-08-27 , DOI: 10.1021/acs.accounts.4c00403 Yu Long 1, 2, 3 , Ying Tao 1 , Wei Lv 4 , Quan-Hong Yang 1, 2
Affiliation
Two-dimensional (2D) materials such as graphene and MXenes offer appealing opportunities in electrochemical energy storage due to their large surface area, tunable surface chemistry, and unique electronic properties. One of the primary challenges in utilizing these materials for practical electrodes, especially those with industrial-level thickness, is developing a highly interconnected and porous conductive network. This network is crucial for supporting continuous electron transport, rapid ion diffusion, and effective participation of all active materials in electrochemical reactions. Moreover, the demand for efficient energy storage in advanced electronic devices and electric vehicles has led to the need for not only thicker but also denser electrodes to achieve compact energy storage. Traditional densification methods often compromise between volumetric capacitance and ion-accessible surface area, which can diminish rate performance. As versatile building blocks, 2D materials can overcome these limitations through the assembly into complex superstructures such as 1D fibers, 2D thin films, and 3D porous networks, a capability less attainable by other nanomaterials.
中文翻译:
通过组装让二维材料在储能领域大放异彩
石墨烯和 MXene 等二维 (2D) 材料由于其较大的表面积、可调节的表面化学性质和独特的电子特性,在电化学储能方面提供了诱人的机会。将这些材料用于实际电极(尤其是具有工业级厚度的电极)的主要挑战之一是开发高度互连的多孔导电网络。该网络对于支持连续电子传输、快速离子扩散以及所有活性材料有效参与电化学反应至关重要。此外,先进电子设备和电动汽车对高效能量存储的需求导致不仅需要更厚而且更密集的电极来实现紧凑的能量存储。传统的致密化方法通常在体积电容和离子可到达的表面积之间进行折衷,这会降低倍率性能。作为多功能构建模块,2D 材料可以通过组装成复杂的超结构(例如 1D 纤维、2D 薄膜和 3D 多孔网络)来克服这些限制,这是其他纳米材料难以实现的能力。
更新日期:2024-08-27
中文翻译:
通过组装让二维材料在储能领域大放异彩
石墨烯和 MXene 等二维 (2D) 材料由于其较大的表面积、可调节的表面化学性质和独特的电子特性,在电化学储能方面提供了诱人的机会。将这些材料用于实际电极(尤其是具有工业级厚度的电极)的主要挑战之一是开发高度互连的多孔导电网络。该网络对于支持连续电子传输、快速离子扩散以及所有活性材料有效参与电化学反应至关重要。此外,先进电子设备和电动汽车对高效能量存储的需求导致不仅需要更厚而且更密集的电极来实现紧凑的能量存储。传统的致密化方法通常在体积电容和离子可到达的表面积之间进行折衷,这会降低倍率性能。作为多功能构建模块,2D 材料可以通过组装成复杂的超结构(例如 1D 纤维、2D 薄膜和 3D 多孔网络)来克服这些限制,这是其他纳米材料难以实现的能力。