当前位置:
X-MOL 学术
›
Cell Chem. Bio.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Plant synthetic genomics: Big lessons from the little yeast
Cell Chemical Biology ( IF 6.6 ) Pub Date : 2024-08-29 , DOI: 10.1016/j.chembiol.2024.08.001 Hao Ye 1 , Guangyu Luo 2 , Zhenwu Zheng 1 , Xiaofang Li 1 , Jie Cao 1 , Jia Liu 1 , Junbiao Dai 2
Cell Chemical Biology ( IF 6.6 ) Pub Date : 2024-08-29 , DOI: 10.1016/j.chembiol.2024.08.001 Hao Ye 1 , Guangyu Luo 2 , Zhenwu Zheng 1 , Xiaofang Li 1 , Jie Cao 1 , Jia Liu 1 , Junbiao Dai 2
Affiliation
Yeast has been extensively studied and engineered due to its genetic amenability. Projects like Sc2.0 and Sc3.0 have demonstrated the feasibility of constructing synthetic yeast genomes, yielding promising results in both research and industrial applications. In contrast, plant synthetic genomics has faced challenges due to the complexity of plant genomes. However, recent advancements of the project SynMoss, utilizing the model moss plant Physcomitrium patens, offer opportunities for plant synthetic genomics. The shared characteristics between P. patens and yeast, such as high homologous recombination rates and dominant haploid life cycle, enable researchers to manipulate P. patens genomes similarly, opening promising avenues for research and application in plant synthetic biology. In conclusion, harnessing insights from yeast synthetic genomics and applying them to plants, with P. patens as a breakthrough, shows great potential for revolutionizing plant synthetic genomics.
中文翻译:
植物合成基因组学:从小酵母中汲取重要教训
由于酵母的遗传适应性,酵母已被广泛研究和工程化。Sc2.0 和 Sc3.0 等项目已经证明了构建合成酵母基因组的可行性,在研究和工业应用中都取得了可喜的成果。相比之下,由于植物基因组的复杂性,植物合成基因组学面临着挑战。然而,SynMoss 项目的最新进展,利用模型苔藓植物 Physcomitrium patens,为植物合成基因组学提供了机会。P. patens 和酵母之间的共同特征,例如高同源重组率和显性单倍体生命周期,使研究人员能够类似地操纵 P. patens 基因组,为植物合成生物学的研究和应用开辟了有前途的途径。总之,利用酵母合成基因组学的见解并将其应用于植物,以 P. patens 为突破,显示出彻底改变植物合成基因组学的巨大潜力。
更新日期:2024-08-29
中文翻译:
植物合成基因组学:从小酵母中汲取重要教训
由于酵母的遗传适应性,酵母已被广泛研究和工程化。Sc2.0 和 Sc3.0 等项目已经证明了构建合成酵母基因组的可行性,在研究和工业应用中都取得了可喜的成果。相比之下,由于植物基因组的复杂性,植物合成基因组学面临着挑战。然而,SynMoss 项目的最新进展,利用模型苔藓植物 Physcomitrium patens,为植物合成基因组学提供了机会。P. patens 和酵母之间的共同特征,例如高同源重组率和显性单倍体生命周期,使研究人员能够类似地操纵 P. patens 基因组,为植物合成生物学的研究和应用开辟了有前途的途径。总之,利用酵母合成基因组学的见解并将其应用于植物,以 P. patens 为突破,显示出彻底改变植物合成基因组学的巨大潜力。