当前位置:
X-MOL 学术
›
Chem Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A solar cell with an ultra-reactive confined microinterface for high-flux water purification
Chem Catalysis ( IF 11.5 ) Pub Date : 2024-08-29 , DOI: 10.1016/j.checat.2024.101084 Jun Zhang , Songying Qu , Lin Lin , Ruiquan Yu , Wutong Chen , Xiaoyan Li
Chem Catalysis ( IF 11.5 ) Pub Date : 2024-08-29 , DOI: 10.1016/j.checat.2024.101084 Jun Zhang , Songying Qu , Lin Lin , Ruiquan Yu , Wutong Chen , Xiaoyan Li
Advanced oxidation processes represent effective approaches toward water purification, but they are often energy and chemical intensive. Here, we show a solar cell with a highly reactive microinterface for high-flux wastewater treatment with requirements for only water, oxygen, and sunlight. Experiments demonstrate that hydrogen peroxide is produced in a porous cathode via two-electron oxygen reduction and then flows to a porous photoanode surface, where it is instantly activated to hydroxyl radicals (⋅OH) by light and integrated with indigenous ⋅OH generated via one-electron water oxidation. Accordingly, a microscale region (∼150 μm for thickness) with high-density ⋅OH (∼2.5 mM) is successfully constructed but remains spatially constrained on the photoanode surface. Refractory pollutants (such as norfloxacin) pass through this microinterface successively and are degraded rapidly (>99% in ∼0.6-s retention time) due to violent collision between ⋅OH and targets, even after 360 h of long-term operation. Our findings highlight an innovative catalytic platform design scheme for efficient water purification.
中文翻译:
具有超反应受限微界面的太阳能电池,用于高通量水净化
高级氧化工艺代表了水净化的有效方法,但它们通常是能源和化学品密集型的。在这里,我们展示了一种具有高反应性微界面的太阳能电池,用于仅需要水、氧气和阳光的高通量废水处理。实验表明,过氧化氢是通过双电子氧还原在多孔阴极中产生的,然后流到多孔光电阳极表面,在那里它被光立即激活为羟基自由基 (·OH),并与通过一电子产生的固有·OH 结合。电子水氧化。因此,成功构建了具有高密度·OH(~2.5 mM)的微尺度区域(厚度~150 μm),但在光电阳极表面上仍然受到空间限制。难降解污染物(如诺氟沙星)连续通过该微界面,由于·OH与目标之间的剧烈碰撞,即使在长期运行360小时后,也会迅速降解(约0.6秒保留时间内>99%)。我们的研究结果突出了用于高效水净化的创新催化平台设计方案。
更新日期:2024-08-29
中文翻译:
具有超反应受限微界面的太阳能电池,用于高通量水净化
高级氧化工艺代表了水净化的有效方法,但它们通常是能源和化学品密集型的。在这里,我们展示了一种具有高反应性微界面的太阳能电池,用于仅需要水、氧气和阳光的高通量废水处理。实验表明,过氧化氢是通过双电子氧还原在多孔阴极中产生的,然后流到多孔光电阳极表面,在那里它被光立即激活为羟基自由基 (·OH),并与通过一电子产生的固有·OH 结合。电子水氧化。因此,成功构建了具有高密度·OH(~2.5 mM)的微尺度区域(厚度~150 μm),但在光电阳极表面上仍然受到空间限制。难降解污染物(如诺氟沙星)连续通过该微界面,由于·OH与目标之间的剧烈碰撞,即使在长期运行360小时后,也会迅速降解(约0.6秒保留时间内>99%)。我们的研究结果突出了用于高效水净化的创新催化平台设计方案。