Nature Nanotechnology ( IF 38.1 ) Pub Date : 2024-08-29 , DOI: 10.1038/s41565-024-01775-2 Hao Wang 1, 2 , Peng Fan 1, 2 , Jing Chen 1, 2 , Lili Jiang 2 , Hong-Jun Gao 1, 2 , Jose L Lado 3 , Kai Yang 1, 2
Artificial quantum systems have emerged as platforms to realize topological matter in a well-controlled manner. So far, experiments have mostly explored non-interacting topological states, and the realization of many-body topological phases in solid-state platforms with atomic resolution has remained challenging. Here we construct topological quantum Heisenberg spin lattices by assembling spin chains and two-dimensional spin arrays from spin-1/2 Ti atoms on an insulating MgO film in a scanning tunnelling microscope. We engineer both topological and trivial phases of the quantum spin model and thereby realize first- and second-order topological quantum magnets. We probe the many-body excitations of the quantum magnets by single-atom electron spin resonance with an energy resolution better than 100 neV. Making use of the atomically localized magnetic field of the scanning tunnelling microscope tip, we visualize various many-body topological bound modes including topological edge states, topological defects and higher-order corner modes. Our results provide a bottom-up approach for the simulation of exotic quantum many-body phases of interacting spins.
中文翻译:
从表面上的原子自旋构建拓扑量子磁体
人工量子系统已成为以良好控制的方式实现拓扑物质的平台。到目前为止,实验主要探索非相互作用的拓扑状态,在具有原子分辨率的固态平台中实现多体拓扑相仍然具有挑战性。在这里,我们通过在扫描隧道显微镜中将自旋链和自旋 1/2 Ti 原子的自旋链和二维自旋阵列组装在绝缘 MgO 薄膜上来构建拓扑量子海森堡自旋晶格。我们设计了量子自旋模型的拓扑和平凡相位,从而实现了一阶和二阶拓扑量子磁体。我们通过能量分辨率优于 100 neV 的单原子电子自旋共振探测量子磁体的多体激发。利用扫描隧道显微镜尖端的原子定位磁场,我们可视化了各种多体拓扑结合模式,包括拓扑边缘状态、拓扑缺陷和高阶角模式。我们的结果为模拟相互作用自旋的奇异量子多体相位提供了一种自下而上的方法。