当前位置:
X-MOL 学术
›
Quantum Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synchronization-induced violation of thermodynamic uncertainty relations
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-08-29 , DOI: 10.1088/2058-9565/ad6fc9 Luca Razzoli , Matteo Carrega , Fabio Cavaliere , Giuliano Benenti , Maura Sassetti
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2024-08-29 , DOI: 10.1088/2058-9565/ad6fc9 Luca Razzoli , Matteo Carrega , Fabio Cavaliere , Giuliano Benenti , Maura Sassetti
Fluctuations affect the functionality of nanodevices. Thermodynamic uncertainty relations (TURs), derived within the framework of stochastic thermodynamics, show that a minimal amount of dissipation is required to obtain a given relative energy current dispersion, that is, current precision has a thermodynamic cost. It is therefore of great interest to explore the possibility that TURs are violated, particularly for quantum systems, leading to accurate currents at lower cost. Here, we show that two quantum harmonic oscillators are synchronized by coupling to a common thermal environment, at strong dissipation and low temperature. In this regime, periodically modulated couplings to a second thermal reservoir, breaking time-reversal symmetry and taking advantage of non-Markovianity of this latter reservoir, lead to strong violation of TURs for local work currents, while maintaining finite output power. Our results pave the way for the use of synchronization in the thermodynamics of precision.
中文翻译:
同步引起的热力学不确定性关系的破坏
波动影响纳米器件的功能。在随机热力学框架内推导的热力学不确定性关系(TUR)表明,获得给定的相对能量电流色散需要最小的耗散量,即电流精度具有热力学成本。因此,探索违反 TUR 的可能性非常有意义,特别是对于量子系统,从而以更低的成本获得精确的电流。在这里,我们展示了两个量子谐振子通过耦合到共同的热环境、在强耗散和低温下实现同步。在这种情况下,周期性调制与第二个热储层的耦合,打破时间反转对称性并利用后一个热储层的非马尔可夫性,导致局部工作电流严重违反 TUR,同时保持有限的输出功率。我们的结果为精确热力学中同步的使用铺平了道路。
更新日期:2024-08-29
中文翻译:
同步引起的热力学不确定性关系的破坏
波动影响纳米器件的功能。在随机热力学框架内推导的热力学不确定性关系(TUR)表明,获得给定的相对能量电流色散需要最小的耗散量,即电流精度具有热力学成本。因此,探索违反 TUR 的可能性非常有意义,特别是对于量子系统,从而以更低的成本获得精确的电流。在这里,我们展示了两个量子谐振子通过耦合到共同的热环境、在强耗散和低温下实现同步。在这种情况下,周期性调制与第二个热储层的耦合,打破时间反转对称性并利用后一个热储层的非马尔可夫性,导致局部工作电流严重违反 TUR,同时保持有限的输出功率。我们的结果为精确热力学中同步的使用铺平了道路。