Nature ( IF 50.5 ) Pub Date : 2024-08-28 , DOI: 10.1038/s41586-024-07867-2 Chuyu Yang 1, 2 , Lorenz Mammen 1, 2, 3 , Byoungsoo Kim 1, 2 , Meng Li 1 , Drew N Robson 1 , Jennifer M Li 1
Spatial learning in teleost fish requires an intact telencephalon1, a brain region that contains putative analogues to components of the mammalian limbic system (for example, hippocampus)2,3,4. However, cells fundamental to spatial cognition in mammals—for example, place cells (PCs)5,6—have yet to be established in any fish species. In this study, using tracking microscopy to record brain-wide calcium activity in freely swimming larval zebrafish7, we compute the spatial information content8 of each neuron across the brain. Strikingly, in every recorded animal, cells with the highest spatial specificity were enriched in the zebrafish telencephalon. These PCs form a population code of space from which we can decode the animal’s spatial location across time. By continuous recording of population-level activity, we found that the activity manifold of PCs refines and untangles over time. Through systematic manipulation of allothetic and idiothetic cues, we demonstrate that zebrafish PCs integrate multiple sources of information and can flexibly remap to form distinct spatial maps. Using analysis of neighbourhood distance between PCs across environments, we found evidence for a weakly preconfigured network in the telencephalon. The discovery of zebrafish PCs represents a step forward in our understanding of spatial cognition across species and the functional role of the early vertebrate telencephalon.
中文翻译:
斑马鱼端脑空间表示的种群代码
硬骨鱼的空间学习需要完整的端脑1,这是一个包含与哺乳动物边缘系统组成部分(例如海马体)的假定类似物的大脑区域2,3,4。然而,哺乳动物空间认知的基础细胞——例如位置细胞 (PC)5,6——尚未在任何鱼类物种中建立。在这项研究中,使用跟踪显微镜记录自由游动的斑马鱼幼鱼7 的全脑钙活性,我们计算了大脑中每个神经元的空间信息含量8 (spatial information content)。引人注目的是,在每只记录的动物中,具有最高空间特异性的细胞都在斑马鱼端脑中富集。这些 PC 构成了一个空间种群代码,我们可以从中解码动物随时间的空间位置。通过连续记录种群水平的活动,我们发现 PC 的活动流形会随着时间的推移而细化和解开。通过对同种异体和特质线索的系统操作,我们证明了斑马鱼 PC 集成了多种信息来源,并且可以灵活地重新映射以形成不同的空间地图。通过对不同环境中 PC 之间的邻里距离的分析,我们发现了端脑中弱预配置网络的证据。斑马鱼 PC 的发现代表了我们在理解跨物种空间认知和早期脊椎动物端脑功能作用方面向前迈进了一步。