当前位置:
X-MOL 学术
›
J. Netw. Comput. Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Energy efficient multi-user task offloading through active RIS with hybrid TDMA-NOMA transmission
Journal of Network and Computer Applications ( IF 7.7 ) Pub Date : 2024-08-22 , DOI: 10.1016/j.jnca.2024.104005 Baoshan Lu , Junli Fang , Junxiu Liu , Xuemin Hong
Journal of Network and Computer Applications ( IF 7.7 ) Pub Date : 2024-08-22 , DOI: 10.1016/j.jnca.2024.104005 Baoshan Lu , Junli Fang , Junxiu Liu , Xuemin Hong
In this paper, we address the challenge of minimizing system energy consumption for task offloading within non-line-of-sight (NLoS) mobile edge computing (MEC) environments. Our approach integrates an active reconfigurable intelligent surface (RIS) and employs a hybrid transmission scheme combining time division multiple access (TDMA) and non-orthogonal multiple access (NOMA) to enhance the quality of service (QoS) for user task offloading. The formulation of this problem as a non-convex optimization issue presents significant challenges due to its inherent complexity. To overcome this, we introduce an innovative method termed element refinement-based differential evolution (ERBDE). Initially, through rigorous theoretical analysis, we optimally determine the allocation of local computation resources, computation resources at the base station (BS), and transmit power of users, while maintaining fixed values for the offloading ratio, amplification factor, phase of the reflecting element, and the transmission period. Subsequently, we employ the differential evolution (DE) algorithm to iteratively fine-tune the offloading ratio, amplification factor, phase of the reflecting element, and transmission period towards near-optimal configurations. Our simulation results demonstrate that the implementation of active RIS-supported task offloading utilizing the hybrid TDMA-NOMA scheme results in an average system energy consumption reduction of 80.3%.
中文翻译:
通过具有混合 TDMA-NOMA 传输的主动 RIS 实现节能的多用户任务卸载
在本文中,我们解决了在非视距 (NLoS) 移动边缘计算 (MEC) 环境中最大限度地减少任务卸载的系统能耗的挑战。我们的方法集成了有源可重构智能表面 (RIS),并采用结合时分多址 (TDMA) 和非正交多址 (NOMA) 的混合传输方案来提高用户任务卸载的服务质量 (QoS)。由于其固有的复杂性,将这个问题表述为非凸优化问题带来了重大挑战。为了克服这个问题,我们引入了一种称为基于元素细化的差分进化 (ERBDE) 的创新方法。最初,通过严格的理论分析,我们优化地确定了本地计算资源、基站计算资源(BS)和用户发射功率的分配,同时保持了卸载比、放大因子、反射元件相位和传输周期的固定值。随后,我们采用差分进化 (DE) 算法迭代微调卸载比、放大因子、反射元件的相位和传输周期,以实现近乎最佳的配置。我们的仿真结果表明,利用混合 TDMA-NOMA 方案实施主动 RIS 支持的任务卸载可使系统能耗平均降低 80.3%。
更新日期:2024-08-22
中文翻译:
通过具有混合 TDMA-NOMA 传输的主动 RIS 实现节能的多用户任务卸载
在本文中,我们解决了在非视距 (NLoS) 移动边缘计算 (MEC) 环境中最大限度地减少任务卸载的系统能耗的挑战。我们的方法集成了有源可重构智能表面 (RIS),并采用结合时分多址 (TDMA) 和非正交多址 (NOMA) 的混合传输方案来提高用户任务卸载的服务质量 (QoS)。由于其固有的复杂性,将这个问题表述为非凸优化问题带来了重大挑战。为了克服这个问题,我们引入了一种称为基于元素细化的差分进化 (ERBDE) 的创新方法。最初,通过严格的理论分析,我们优化地确定了本地计算资源、基站计算资源(BS)和用户发射功率的分配,同时保持了卸载比、放大因子、反射元件相位和传输周期的固定值。随后,我们采用差分进化 (DE) 算法迭代微调卸载比、放大因子、反射元件的相位和传输周期,以实现近乎最佳的配置。我们的仿真结果表明,利用混合 TDMA-NOMA 方案实施主动 RIS 支持的任务卸载可使系统能耗平均降低 80.3%。